摘要
It is comment that unmanned aerial vehicles (UAVs) have limitation on information cap- turing in reality applications. Therefore, online method of motion planning is necessary for such UA- Vs. Gyroscopic force (GF) is used for obstacle avoidance as an online method. However, classical GF has shortcoming in generating orbit for UAV with high velocity because the GF results in a time- varying turning radius. Modified gyroscopic force (MGF) given by function of velocity can overcome this shortcoming and help get a more practical control law for avoidance. MGF can also be used to implement the guidance of UAV by designing particular active conditions. Interactions in forms of stress function and damping force are introduced so that an UAV group can have coordinated motion. By combining controls of MGF and interactions, motion planning of UAV group in obstacle environ- ment can be implemented.
It is comment that unmanned aerial vehicles (UAVs) have limitation on information cap- turing in reality applications. Therefore, online method of motion planning is necessary for such UA- Vs. Gyroscopic force (GF) is used for obstacle avoidance as an online method. However, classical GF has shortcoming in generating orbit for UAV with high velocity because the GF results in a time- varying turning radius. Modified gyroscopic force (MGF) given by function of velocity can overcome this shortcoming and help get a more practical control law for avoidance. MGF can also be used to implement the guidance of UAV by designing particular active conditions. Interactions in forms of stress function and damping force are introduced so that an UAV group can have coordinated motion. By combining controls of MGF and interactions, motion planning of UAV group in obstacle environ- ment can be implemented.
基金
Supported by the National Natural Science Foundation of China(61350010)