期刊文献+

Motionplanningof UAVgroupusing modifiedgyroscopic force forguidance and avoidance

Motionplanningof UAVgroupusing modifiedgyroscopic force forguidance and avoidance
下载PDF
导出
摘要 It is comment that unmanned aerial vehicles (UAVs) have limitation on information cap- turing in reality applications. Therefore, online method of motion planning is necessary for such UA- Vs. Gyroscopic force (GF) is used for obstacle avoidance as an online method. However, classical GF has shortcoming in generating orbit for UAV with high velocity because the GF results in a time- varying turning radius. Modified gyroscopic force (MGF) given by function of velocity can overcome this shortcoming and help get a more practical control law for avoidance. MGF can also be used to implement the guidance of UAV by designing particular active conditions. Interactions in forms of stress function and damping force are introduced so that an UAV group can have coordinated motion. By combining controls of MGF and interactions, motion planning of UAV group in obstacle environ- ment can be implemented. It is comment that unmanned aerial vehicles (UAVs) have limitation on information cap- turing in reality applications. Therefore, online method of motion planning is necessary for such UA- Vs. Gyroscopic force (GF) is used for obstacle avoidance as an online method. However, classical GF has shortcoming in generating orbit for UAV with high velocity because the GF results in a time- varying turning radius. Modified gyroscopic force (MGF) given by function of velocity can overcome this shortcoming and help get a more practical control law for avoidance. MGF can also be used to implement the guidance of UAV by designing particular active conditions. Interactions in forms of stress function and damping force are introduced so that an UAV group can have coordinated motion. By combining controls of MGF and interactions, motion planning of UAV group in obstacle environ- ment can be implemented.
出处 《Journal of Beijing Institute of Technology》 EI CAS 2014年第3期299-305,共7页 北京理工大学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(61350010)
关键词 UAV group modified gyroscopic force GUIDANCE AVOIDANCE INTERACTION UAV group modified gyroscopic force guidance avoidance interaction
  • 相关文献

参考文献9

  • 1Valavanis K P. Advances in unmanned aerial vehi- cles state of the art and the road to autonomy I M ]. Berlin: Springer, 2007.
  • 2Anderson B D O, Yu C, Fidan B, et al. UAV forma- tion control: theory and application in recent ad- vances in learning and control[J]. Lecture Notes in Information and Control Science, 2008, 371:15 -34.
  • 3Mujumdar A, Padhi R. Evolving philosophies on au- tonomous obstacle/collision avoidance of unmanned aerial vehicles [J]. Journal of Aerospace Compu- ting, Information, and Communication, 2011, 8:17 -41.
  • 4张浩杰,陈慧岩,姜岩,龚建伟,熊光明,陈慧岩,姜岩,龚建伟,熊光明.Variable dimensional state space based global path planning for mobile robot[J].Journal of Beijing Institute of Technology,2012,21(3):328-335. 被引量:1
  • 5Chang D E, Marsden J E. Gyroscopic forces and collision avoidance with convex obstacles[J]. Lec- ture Notes in Control and Information Sciences, Berlin : Springer, 2003, 295 : 145 - 159.
  • 6Chang D E, Shadden S C, Marsden J E, et al. Colli-sion avoidance for multiple agent systems[ C]//Pro- ceedings of IEEE Conference on Decision and Con- trol, Maui HI,USA, 2003 : 539 - 543.
  • 7Anderson B D O, Yu C, Dasgupta S, et al. Control of a three-coleader formation in the plane[ J]. Sys- tems and Control Letters, 2007, 56 (9 - 10) : 573 - 578.
  • 8Olfati-Saber R. Flocking for multi-agent dynamic systems : algorithms and theory [ J ]. IEEE Transac- tion on Automatic Control, 2006, 51 (3) : 401 - 420.
  • 9CortSs J. Global and robust formation shape stabili- zation of relative sensing networks [ J]. Automatica, 2009, 45 ( 12 ) : 2754 - 2762.

二级参考文献13

  • 1Hart P,Nilsson N,Raphael B. A formal basis forthe heuristic determination of minimum cost pathsin graphs [ J ]. IEEE Transactions on Systems Sci-ence and Cybernetics, 1968, 2(30) : 100 - 107.
  • 2Koenig S, Likhachev M, Liu Yaxin, et al. Incremen-tal heuristic search in artificial intelligence[ J]. Arti-ficial Intelligence Magazine, 2004, 25: 99 -112.
  • 3Likhachev M,Gordon G,Sebastian Thrum. ARA* :Anytime A* with provable bounds on sub-optimality[C]//The Seventeenth Annual Conference on Neu-ral Information Processing Systems. Cambridge :MIT Press, 2004: 1 -8.
  • 4Likhachev M,Ferguson D, Gordon G,et al. Any-time dynamic A * : An anytime,replanning algorithm[C]// The International Conference on AutomatedPlanning and Scheduling. Monterey : AAAI Press,2005: 262 -271.
  • 5LaValle S. Rapidly-exploring random trees: A newtool for path planning[ D ]. Ames, Iowa, USA: Io-wa State University, 1998.
  • 6LaValle S,Kuffner J. Randomized kinodynamicplanning [C]// IEEE International Conference onRobotics and Automation. Detroit, MI,USA: IEEE,1999: 473 -479.
  • 7Kirby R,Simmons R,Forlizzi J. Variable sized gridcells for rapid replanning in dynamic environments[C]//IEEE/RSJ International Conference on Intelli-gent Robots and Systems. St. Louis, MO, USA:IEEE, 2009: 4913 -4918.
  • 8Likhachev M, Dave Ferguson. Planning long dynam-ically-feasible maneuvers for autonomous vehicles[J ]. The International Journal of Robotics Re-search, 2009, 28(8) : 933 -945.
  • 9Pivtoraiko M,Knepper R,Kelly A. Optimal,smooth, nonholonomic mobile robot motion plan-ning in state lattices, technical report CMU-RI-TR-07-15 [ R]. Pittsburgh, Pennsylvania, USA: Carne-gie Mellon University, 2007.
  • 10Likhachev M, Ferguson D, Gordon G, et al. Any-time search in dynamic graphs[ J]. Artificial Intel-ligence Journal, 2008,172(14) : 1613 - 1643.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部