期刊文献+

KCNE1胞外N段功能的研究 被引量:1

Function of extracellular N region in KCNE1
下载PDF
导出
摘要 目的:研究电压依赖性钾离子通道-IKs通道的调节亚基KCNE1胞外肽段(氨基端肽段,简称N段)的功能,探究胞外N段在KCNE1调控IKs通道中的作用。方法:通过分子生物学技术制备KCNE1的N段缺失突变体;利用Western Blot方法了解突变体的蛋白表达情况;以细胞免疫染色方法观察突变体的亚细胞定位情况;以全细胞膜片钳记录技术检测突变体(与KCNQ1共表达)的通道电流特征。结果:成功构建KCNE1胞外N段缺失的突变体KCNE1-ΔN,突变体体外表达正常;与野生型相比:KCNE1-ΔN在细胞内的分布出现蛋白集聚现象;通道的电流密度减小,激活电压相比较出现了明显的左移,即通道的激活速率变快。结论:KCNE1的N段对其蛋白表达无明显影响,但对蛋白的转运起重要作用;N段参与了KCNE1对通道电流大小的调节,以及对通道激活特征的调控。 Objective: To investigate the function of N region in KCNE1, which is the regulatory subunit of voltage gated potassium channel-IKs, in order to find out the role of N region on KCNE1 modulating channel. Methods: With molecular technologies, we created N-truncated form named KCNE1-ΔN and then analyse its protein expression using Western Blot;immunocytochemistry was employed to detect subcellular localization of the truncation; while whole cell patch-calmp was used to detect the characteristics of KCNE1-ΔN expressed with KCNQ1. Results: KCNE1-ΔN was constructed successfully,and expressed normally in vivo. Comparing to wide type of KCNE1, KCNE1-ΔN showed intracellular aggression; KCNE1-ΔN also showed significant reduction on whole cell current densities and displayed a significant shift of the voltage-dependent curve towards left, which means speeded activation. Conclusions: N region does not have effect on protein expression but playes a significant role on protein trafficking; N region plays a role on KNCE1 modulating IKschannel's whole cell current densities and channel characteristics on activation.
出处 《南通大学学报(医学版)》 2014年第5期352-354,共3页 Journal of Nantong University(Medical sciences)
基金 国家自然科学基金资助项目(30770537) 江苏省基础医学优势学科建设项目 南通大学大学生创新训练计划项目(2014093)
关键词 KCNE1 胞外氨基端肽段 IKs通道 缺失突变体 KCNE 1 extracellular N region IK8 channel truncation mutant
  • 相关文献

参考文献11

  • 1Mccrossan ZA, Abbott GW. The MinK-related peptides[J]. Neuropharmacology, 2004, 47(6):787-821.
  • 2Warth R, Garcia Alzamora M, Kim JK, et al. The role of KCNQ1/KCNE1 K(+) channels in intestine and pancreas: lessons from the KCNE1 knockout mouse[J]. Pfiugers Arch, 2002, 443(5/6):822-828.
  • 3Jost N, Virtg L, Bitay M, et al. Restricting excessive car- diac action potential and QT prolongation: a vital role for IKs in human ventricular muscle[J]. Circulation, 2005, 112 (10): 1392-1399.
  • 4Splawski I, Shen J, Timothy KW, et al. Spectrum of muta- tions in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2[J]. Circulation, 2000, 102(10): 1178-1185.
  • 5Pusch M, Magrassi R, Wollnik B, et al. Activation and in- activation of homomeric KvLQT1 Potassium channels [J]. Biophys J, 1998, 75(2):785-792.
  • 6Girmatsion Z, Biliczki P, Takac I, et al. N-terminal arginines modulate plasma-membrane[J]. PLoS One, 2011, 6 (11):e26967.
  • 7Fodstad H, Swan H, Laitinen P, et al. Four Potassium Channel mutations account for 73% of the genetic spec- trum underlying long-QT syndrome(LQTS) and provide evidence for a strong founder effect in Finland[J]. Ann Med, 2004, 36(Suppl 1):53-63.
  • 8Melman YF, Krumerman A, Mcdonald TV. A single trans- membrane site in the KCNE-encoded proteins controls the specificity of KvLQT1 Channel gating[J]. J Biol Chem, 2002, 277(28):25187-25194.
  • 9Melman YF, Domenech A, de la Luna S, et al. Structural determinants of KvLQT1 control by the KCNE family of proteins[J]. J Biol Chem, 2001, 276(9):6439-6444.
  • 10Tapper AR, George AL. MinK subdomains that mediate modulation of and association with KvLQTI[J]. J Gen Physiol, 2000, 116(3):379-390.

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部