期刊文献+

多边形网格的非流形封闭三角形网格正则化 被引量:4

Construction of Non-manifold Closed Regular Triangle Mesh from Polygonal Mesh
下载PDF
导出
摘要 为了提高基于网格模型的算法与应用的效率和稳定性,提出一种将任意多边形网格模型转化为正则三角网格模型的算法.首先对输入多边形网格模型中非三角形的面片进行三角剖分,然后查找并移除模型中的重合或重叠元素,再通过模型内部三角形求交对模型进行边和面的分割,从而修正模型的拓扑结构;在求交的过程中,根据边和三角形的位置关系对共面求交进行细致的分类处理,减少了求交次数,提高了算法的稳定性;最后循环搜索在网格模型中可以确定法向的种子三角形,通过拓扑结构调整与之相邻的三角形的法向,最终构成一个或多个法向确定的闭合曲面.实验结果表明,该算法能够将多边形网格转化为正则三角形网格模型. To improve the efficiency and the stability of algorithms based on polygonal meshes, an algorithm to regularize a polygonal mesh into a regular triangle mesh is proposed. First, triangularize the input mesh and remove the coincident or overlapped elements. Then split the faces and edges of the model by computing the intersection of triangles and justifying the topology. During the process of intersection, an algorithm according to the classification of the relationship between the edges and the coplanar triangles is used to reduce the time cost and improve the efficiency. Find a seed triangle with the determined normal, adjust its neighbors according to the topology continuity, and at last one or more normal-determined closed surfaces are obtained. Experiments show that the algorithm can well convert a polygonal mesh to a regular triangle mesh.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第10期1557-1566,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 国家国际科技合作专项(2013DFE13120) 国家自然科学基金(61272235 91315302)
关键词 模型修复 正则化 三角形网格 非流形 model repair regularization triangle mesh non-manifold
  • 相关文献

参考文献23

  • 1胡楷模,王斌,雍俊海.IGES边界模型转换中的参数域重构与修正算法[J].计算机辅助设计与图形学学报,2009,21(9):1243-1250. 被引量:4
  • 2Attene M,Campen M,Kobbelt L.Polygon mesh repairing:an application perspective[J].ACM Computing Surveys,2013,45(2):Article No.15.
  • 3Botsch M,Pauly M,Rossl C,et al.Geometric modeling based on triangle meshes[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH.New York:ACM Press,2006:Article No.1.
  • 4Liepa P.Filling holes in meshes[C]//Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing.Aire-la-Ville:Eurographics Association Press,2003:200-205.
  • 5Ju T.Robust repair of polygonal models[J].ACM Transactions on Graphics,2004,23(3):888-895.
  • 6Borodin P,Zachmann G,Klein R.Consistent normal orientation for polygonal meshes[C]//Proceedings of International Computer Graphics.Los Alamitos:IEEE Computer Society Press,2004:18-25.
  • 7Bruce G B.A polyhedron representation for computer vision[C]//Proceedings of the National Computer Conference and Exposition.New York:ACMPress,1975:589-596.
  • 8Guibas L,Stolfi J.Primitives for the manipulation of general subdivisions and the computation of Voronoi[J].ACM Transactions on Graphics,1985,4(2):74-123.
  • 9孟亮,方金云,韩承德.基于对称边双循环链表的三角格网表示与实现[J].计算机工程,2008,34(6):28-29. 被引量:1
  • 10Botsch M, Steinberg S, Bisehoff S, et al. OpenMesh: a generic and efficient polygon mesh data structure [OL]. [2014-04-16]. https://www, graphics, rwth-aachen, de/media/ papers/openmesbl, pdf.

二级参考文献49

共引文献19

同被引文献34

  • 1戴宁,廖文和,陈春美.STL数据快速拓扑重建关键算法[J].计算机辅助设计与图形学学报,2005,17(11):2447-2452. 被引量:37
  • 2王坚,周来水,张维中.基于三角片拼合的STL网格模型重建算法[J].计算机辅助设计与图形学学报,2006,18(11):1758-1764. 被引量:7
  • 3Baumgart B G. Winged edge polyhedron representation[R].Stanford: Stanford University. Computer Science Department,1972.
  • 4Kettner L. Using generic programming for designing a datastructure for polyhedral surfaces[J]. Computational Geometry,1999, 13(1): 65-90.
  • 5Sieger D, Botsch M. Design, implementation, and evaluation ofthe surface mesh data structure[C] //Proceedings of the 20thInternational Meshing Roundtable. Heidelberg: Springer, 2012:533-550.
  • 6Campagna S, Kobbelt L, Seidel H P. Directed edges - a scalablerepresentation for triangle meshes[J]. Journal of Graphics Tools,1998, 3(4): 1-11.
  • 7Gurunga T, Luffel M, Lindstrom P, et al. Zipper: a compactconnectivity data structure for triangle meshes[J]. Computer-AidedDesign, 2013, 45(2): 262-269.
  • 8Aleardi L C, Olivier D. Explicit array-based compact datastructures for triangulations[M] //Lecture Notes in ComputerScience. Heidelberg: Springer, 2011, 7074: 312-322.
  • 9Botsch M, Kobbelt L, Pauly M, et al. Polygon mesh processing[M]. Natick: A K Peters, 2010: 1-28.
  • 10Szilvasi-Nagy M, Matyasi G Y. Analysis of STL files[J]. Mathematicaland Computer Modelling, 2003, 38(7-9): 945-960.

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部