期刊文献+

改进局部自适应的快速FCM肺结节分割方法 被引量:16

Research on Fast FCM Pulmonary Nodule Segmentation Algorithm Using Improved Self-adaption
下载PDF
导出
摘要 进行肺部肿瘤计算机辅助诊断的关键问题是实现对病变组织的正确、快速分割,为此,提出了一种能够有效提高局部邻域像素自适应程度的快速模糊C均值聚类肺结节分割方法.首先构造像素与邻域窗口空间关系的二维向量表示,获得不同向量值的统计分布规律;然后用改进的空间函数综合考虑中心像素与单个相邻像素间的灰度相似度、与邻域窗口的空间相似度对模糊隶属度的贡献,动态地调整邻域像素的隶属度对中心像素的影响;最后给出该方法在迭代计算效率和局部自适应方面的改进.实验结果表明,该方法对血管粘连型、胸膜粘连型和毛玻璃肺结节的分割效果优于其他典型算法. The key problem of computer-aided diagnosis (CAD) of the lung cancer is to segment the pathological changed tissues fast and accurately. As pulmonary nodules are potential manifestation of the lung cancer, we propose a fast fuzzy C-means clustering pulmonary nodules segmentation method that can effectively improve the local neighborhood self-adaptability. First, the algorithm constructs two-dimensional vectors of spatial relations between pixels and neighborhood, for getting the statistical distribution pattern of different vector. Then, the enhanced spatial function considers both the gray- scale similarity and spatial similarity, updates the cluster centers iteratively and fuzzy membership degree, for adjusting the effect of membership degree from the neighborhood pixels. Finally, algorithm analysis shows improvement for iteration computing efficiency and local self-adaption. The experimental results show that the proposed algorithm can achieve more accurate segmentation of vascular adhesion, pleural adhesion and ground glass opacity (GGO) pulmonary nodules, and performs better in convergence efficiency and error rates.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第10期1727-1736,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61020106001,61272245,61103117,61173174) NSFC广东联合基金(U1201258) 山东省中青年科学家奖励基金(BS2011DX025) 济南市科技计划项目(201401216)
关键词 模糊C均值聚类 肺结节分割 局部邻域像素 空间相似度 fuzzy C-means (FCM) clustering pulmonary nodules segmentation local neighborhoodpixels spatial similarity
  • 相关文献

参考文献25

  • 1https://public.cancerimagingarchive.net/ncia/login.jsf.
  • 2Doi K.Computer-aided diagnosis in medical imaging:historical review,current status and future potential[J].Computerized Medical Imaging and Graphics,2007,31 (4/5):198-211.
  • 3李积英,党建武,王阳萍.融合量子克隆进化与二维Tsallis熵的医学图像分割算法[J].计算机辅助设计与图形学学报,2014,26(3):465-471. 被引量:16
  • 4Reeves A P,Chan A B,Yankelevitz D F.On measuring the change in size of pulmonary nodules[J].IEEE Transaction on Medical Imaging,2006,25(4):435-450.
  • 5Dehmeshki J,Amin D,Valdivieso M,et al.Segmentation of pulmonary nodules in thoracic CT scans:a region growing approach[J].IEEE Transaction on Medical Imaging,2008,27(4):467-480.
  • 6Jiang X,Nie S D.Segmentation of pulmonary nodule in CT image based on level set method[C]//Proceedings of the 2nd International Conference on BiMnformatics and Biomedical Engineering.Los Alamitos:IEEE Computer Society Press,2008:2698-2701.
  • 7王顺凤,冀晓娜,张建伟,陈允杰,方林.局部熵驱动的生物医学图像分割偏移场恢复耦合模型[J].计算机辅助设计与图形学学报,2013,25(5):607-615. 被引量:3
  • 8McIntosh C,Hamarneh G.Medial based deformable models in nonconvex shape spaces for medical image segmentation[J].IEEE Transaction on Medical Imaging,2012,31 (1):33-50.
  • 9陈侃,李彬,田联房.基于模糊速度函数的活动轮廓模型的肺结节分割[J].自动化学报,2013,39(8):1257-1264. 被引量:13
  • 10Murphy K,van Ginneken B,Schilham A M R.A large scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k nearest neighbor classification[J].Medical Image Analysis,2009,13 (5):757-770.

二级参考文献41

  • 1朱炜,徐玉如,万磊,吕春旺.基于二维直方图和粒子群优化的边缘检测[J].系统工程与电子技术,2007,29(7):1192-1196. 被引量:7
  • 2Diciotti S, Picozzi G: Falchimi M, Mascalchi M, Villari N, Valli G. 3-D segmentation algorithm of small lung nodules in spiral CT images. IEEE Transactions on Information Tech- nology in Biomedicine, 2008, 12(1): 7-19.
  • 3Papandreou G, Maragos P. Multigrid geometric active con- tour models. IEEE Transactions on hnage Processing, 2007, 16(1): 229-240.
  • 4Li C M, Xu C Y, Gui C F, Fox M D. Distance regularized level set evolution and its application to image segmenta- tion. IEEE Transactions on Image Processing, 2010, 19(12): 3243-3254.
  • 5Cui H, Gao L Q. Geodesic active contour, inertia and initial speed. Pattern Recognition Letters, 2008, 29(16): 2197-2205.
  • 6Tao W B. Iterative narrowband-based graph cuts opti- mization for geodesic active contours with region forces (GACWRF). IEEE Transactions on Image Processing, 2012, 21(1): 284-296.
  • 7Sakalli M, Lain K M, Yah H. A faster converging snake al- gorithm to locate object boundaries. IEEE Transactions on Image Processing, 2006, 15(5): 1182-1191.
  • 8Xiao D, Ng W S, Tsang C B, Abeyratne U R. A region and gradient based active contour model and its application in boundary tracking on anal canal ultrasound images. Pattern Recognition, 2007, 40(12): 3522-3539.
  • 9Sun K Q, Chen Z, Jiang S F. Local morphology fitting active contour for automatic vascular segmentation. IEEE Trans- actions on Biomedical Engineering, 2012, 59(2): 464-473.
  • 10Li C M, Huang R, Ding Z H, Gatenby J C, Metaxax D N, Gore J C. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Transactions on Image Processing, 2011, 20 (7) : 2007-2015.

共引文献47

同被引文献211

引证文献16

二级引证文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部