期刊文献+

多特征提取逐步求精的高速移动目标跟踪算法 被引量:5

Multi-feature Extraction and Stepwise Refinement Based High-speed Moving Target Tracking Algorithm
下载PDF
导出
摘要 传统的高速移动目标跟踪通常使用图像特征描述,不能够根据跟踪场景自适应地选择最优跟踪特征,导致功能模板很容易产生漂移问题.为此,提出一种基于特征融合和逐步求精的高速移动目标跟踪算法.该算法主要包括3个阶段:第1阶段为自适应多特征融合阶段,通过计算跟踪目标每一特征的前景及背景的区分度,获取目标特征的融合模型;第2阶段是基于多特征内核跟踪阶段,在Mean-Shift框架下,引入Epanechnikov函数作为内核函数提升目标区域中心的像素权重比值;第3阶段为目标模型的自适应更新,通过设计一种模板更新策略提高跟踪结果的准确度.仿真实验结果表明,该算法适用于高速目标跟踪. The traditional high-speed moving target tracking schemes can only use image features description constantly, but not adaptively choose the optimal tracking feature according to tracking scenes, which leads to the feature template drift easily. To solve the above problem, a new tracking algorithm of high-speed moving targets based on multi-feature fusion and stepwise refinement is presented. This algorithm consists of three stages, the first stage is the adaptive multi feature fusion stage, through the calculation of target tracking of foreground and background for each feature discrimination, fusion model acquisition target feature; the second stage is the feature tracking based on kernel stage, in the Mean-Shift framework, using Epanechnikov function as the kernel function of pixel weight lifting the ratio of target area center; adaptive updates for the third phase of the target model, through the design of a template updating strategy to improve the accuracy of tracking results. The simulation results show that the proposed algorithm is suitable to track a high-speed target.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第10期1747-1752,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61070078)
关键词 多特征提取 逐步求精 高速移动目标 跟踪 multi-feature extraction stepwise refinements high-speed moving targets tracking
  • 相关文献

参考文献16

  • 1Collins R T,Yanxi L,Marius L.Online selection of discriminative tracking features[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27 (10):1631-1643.
  • 2Azghani M,Aghagolzadeh A,Ghaemi S,et al.Intelligent modified mean shift tracking using genetic algorithm[C]//Proceedings of the 5th International Symposium on Telecommunications.Los Alamitos:IEEE Computer Society Press,2010:806-811.
  • 3Liang D W,Huang Q M,Jiang S Q,et al.Mean Shift blob tracking with adaptive feature selection and scale adaptation[C]//Proceedings of IEEE Conference on Image Processing.Los Alamitos:IEEE Computer Society Press,2007:369-372.
  • 4He W,Zhao X L,Zhabg L.Online feature extraction and selection for object tracking[C]//Proceedings of IEEE Conference on Mechatronics and Automation.Los Alamitos:IEEE Computer Society Press,2007:3497-3502.
  • 5闫辉,许廷发,吴青青,徐磊,吴威.多特征融合匹配的多目标跟踪[J].中国光学,2013,6(2):163-170. 被引量:28
  • 6Choi J Y,Ro Y M,Plataniotis K N.Boosting color feature selection for color face recognition[J].IEEE Transactions on Image Processing,2011,20(5):1425-1434.
  • 7Padmakala S,AnandhaMala G S,Shalini M.An effective content based video retrieval utilizing texture,color and optimal key frame features[C]//Proceedings of International Conference on Image Information Processing.Los Alamitos:IEEE Computer Society Press,2011:1-6.
  • 8Lin B F,Chan Y M,Chen F L,etal.Integrating appearance and edge features for sedan vehicle detection in the Blind-Spot area[J].IEEE Transactions on Intelligent Transportation Systems,2012,13(2):737-747.
  • 9van der Heijden F.Edge and line feature extraction based on covariance models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(1):16-33.
  • 10刘丽,匡纲要.图像纹理特征提取方法综述[J].中国图象图形学报,2009,14(4):622-635. 被引量:430

二级参考文献36

共引文献470

同被引文献53

  • 1宋新,沈振康,王平,王鲁平.Mean shift在目标跟踪中的应用[J].系统工程与电子技术,2007,29(9):1405-1409. 被引量:30
  • 2ZHANG S, YAO H, SUN X, et al. Sparse coding based visual tracking: review and experimental comparison [J]. Pattern Recognition, 2013, 46(7): 1772-1788.
  • 3WU Y, LIM J, YANG M H. Online object tracking: a benchmark [C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 2411-2418.
  • 4ISARD M, BLACK A. Condensation-conditional density propagation for visual tracking [J]. International Journal on Computer Vision, 1998, 29(1): 5-28.
  • 5COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 6FOUAD B, LYNDA D, SNOUSSI H. Improved mean shift integrating texture and color features for robust real time object tracking [J]. The Visual Computer, 2013, 29(3): 155-170.
  • 7AVIDAN S. Support vector tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1064-1072.
  • 8ZHANG K, SONG H. Real-time visual tracking via online weighted multiple instance learning [J]. Pattern Recognition, 2013, 46(1): 397-411.
  • 9ROSS D, LIM J, LIN R. Incremental learning for robust visual tracking [J]. International Journal of Computer Vision, 2008, 77(3): 125-141.
  • 10MEI X, LING H. Robust visual tracking using L1 minimization [C]// Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Piscataway: IEEE, 2009: 1436-1443.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部