期刊文献+

基于张量低秩恢复和块稀疏表示的运动显著性目标提取 被引量:11

Motion Saliency Extraction via Tensor Based Low-rank Recovery and Block-sparse Representation
下载PDF
导出
摘要 针对视频的高维结构特性,采用张量表征并将运动显著性目标提取转化为基于低秩张量恢复和块稀疏表示问题.首先根据背景张量的低秩性和运动目标的稀疏性,利用加速近端梯度张量恢复方法分别重建出RGB颜色通道中三维视频张量的低秩部分与稀疏部分,初步实现背景与运动目标的粗略分离;其次组合三颜色通道稀疏张量并转化为按照帧数展开的二维矩阵,进一步通过矩阵恢复的方法去除动态背景产生的小稀疏块干扰;最后通过自适应阈值法选择运动目标稀疏块掩模并对存在的空洞进行填充补偿,以达到重构出完整前景运动目标的目的.相对于常用方法,该方法从张量模型角度解决运动目标提取问题,较大程度地保护了视频序列的原始空间结构,不仅能够降低运动目标提取区域出现的漏检问题,而且可以很好地去除动态背景所带来的干扰.实验结果表明,该方法对运动目标提取的准确度较高,鲁棒性较强. According to the high dimensional structure of the video modality, this paper formulates the motion saliency extraction as the tensor based low-rank recovery and block-sparse representation problem. First, the proposed approach utilizes the accelerated proximal gradient based tensor recovery to reconstruct the low-rank and sparse sensors of RGB color channels, through which the rough motion saliency can be initially separated from the background. Then, the sparse tensors of the three color channels are grouped together and unfolded into the matrix in terms of the frame number. Subsequently, the matrix recovery method is further employed to process this unfolded matrix such that the small but irrelevant sparse components can be removed. Finally, the adaptive threshold method is utilized to select the block-sparse mask with respected to motion saliency and the holes within the mask is simultaneously filled, whereby the motion saliency can be well extracted. Comparing with traditional methods, the proposed approach utilizing the tensor model to preserve the spatial structure of the video modality, not only can reduce the missing detection problem, but also isable to remove the interferences of dynamic background. The experimental results have shown the promising performances.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第10期1753-1763,共11页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61300138 61175121 61202297 61202299) 福建省自然科学基金(2014J01239) 华侨大学高层次人才科研启动基金(14BS207)
关键词 运动目标提取 张量恢复 块稀疏表示 自适应阈值 动态背景 motion saliency extraction tensor recovery block-sparse representation adaptivethreshold dynamic background
  • 相关文献

参考文献22

  • 1Black M J,Jepson A D.Estimating optical flow in segmented images using variable-order parametric models with local deformations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(10):972-986.
  • 2Mae Y,Shirai Y,Miura J,etal.Object tracking in cluttered background based on optical flow and edges[C]//Proceedings of the 13th International Conference on Pattern Recognition.Los Alamitos:IEEE Computer Society Press,1996:196-200.
  • 3肖梅,韩崇昭,张雷.基于时空背景差的运动目标检测算法[J].计算机辅助设计与图形学学报,2006,18(7):1044-1048. 被引量:17
  • 4王斌,肖文华,张茂军,熊志辉,刘煜.采用时空条件信息的动态场景运动目标检测[J].计算机辅助设计与图形学学报,2012,24(12):1576-1584. 被引量:8
  • 5Oliver N M,Rosario B,Pentland A P.A Bayesian computer vision system for modeling human interactions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):831-843.
  • 6Stauffer C,Grimson W E L.Adaptive background mixture models for real time tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,1999,2:252-258.
  • 7Lee D S.Effective Gaussian mixture learning for video background subtraction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(5):827-832.
  • 8Zivkovic Z.Improved adaptive Gaussian mixture model for background subtraction[C]//Proceedings of the 17th IEEE International Conference on Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2004:28-31.
  • 9Sheikh Y,Shah M.Bayesian modeling of dynamic scenes for object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(11):1778-1792.
  • 10Zivkovic Z,van der Heijden F.Efficient adaptive density estimation per image pixel for the task of background subtraction[J].Pattern Recognition Letters,2006,27 (7):773-780.

二级参考文献26

  • 1袁晓彤,郭礼华,杨树堂.利用区域变形和背景更新实现运动对象跟踪[J].计算机辅助设计与图形学学报,2005,17(5):921-927. 被引量:5
  • 2陈睿,邓宇,向世明,李华.结合强度和边界信息的非参数前景/背景分割方法[J].计算机辅助设计与图形学学报,2005,17(6):1278-1284. 被引量:13
  • 3向世明,陈睿,邓宇,李华.在线高斯混合模型和纹理支持的运动分割[J].计算机辅助设计与图形学学报,2005,17(7):1504-1509. 被引量:11
  • 4肖梅,韩崇昭,张雷.基于时空背景差的运动目标检测算法[J].计算机辅助设计与图形学学报,2006,18(7):1044-1048. 被引量:17
  • 5Hou Z Q,Han C Z.A background reconstruction algorithm based on pixel intensity classification in remote video surveillance system[C] //Proceedings of the 7th International Conference on Information Fusion,Stockholm,2004:754-759
  • 6Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking[C] // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Fort Collins,1999:246-252
  • 7Elgammal A,Harwood D,Davis L.Non-parametric model for background subtraction[C] // Proceedings of the 6th European Conference on Computer Vision,Dublin,2000:751-767
  • 8Cheung S C S,Kamath C.Robust techniques for background subtraction in urban traffic video[C] //Proceedings of SPIE,San Jose,2004,5308:881-892
  • 9Fuentes L,Velastin S.From tracking to advanced surveillance[C]//Proceedings of IEEE International Conference on Image Processing,Barcelona,2003:121-124
  • 10Herrero E,Orrite C,Senar J.Detected motion classification with a double-background and a neighborhood-based difference[J].Pattern Recognition Letters,2003,24(12):2079-2092

共引文献23

同被引文献82

  • 1孙凤杰,郭凤顺,范杰清,王铁滨.基于图像处理技术的表盘指针角度识别研究[J].中国电机工程学报,2005,25(16):73-78. 被引量:45
  • 2葛涛,冯松鹤.基于层次和动态阈值的图像显著区域检测方法[J].计算机应用,2006,26(11):2721-2723. 被引量:7
  • 3李治玮,郭戈.一种新型指针仪表识别方法研究[J].微计算机信息,2007,23(31):113-114. 被引量:34
  • 4Moghaddam R F, Cheriet M. A multi-scale framework foradaptive binarization of degraded document images[J]. PatternRecognition, 2010, 43(6): 2186-2198.
  • 5Szeliski R. Computer vision: algorithms and applications[M].Heidelberg: Springer, 2010: 10-50.
  • 6Liu S G, Liu M Y, He Y. Checking on the quality of gauge panelbased on wavelet analysis[C] //Proceedings of InternationalConference on Machine Learning and Cybernetics. Los Alamitos:IEEE Computer Society Press, 2002: 763-767.
  • 7Han J L, Li E, Tao B J, et al. Reading recognition method ofanalog measuring instruments based on improved Houghtransform[C] //Proceedings of the 10th International Conferenceon Electronic Measurement and Instruments. Los Alamitos:IEEE Computer Society Press, 2011: 337-340.
  • 8Yue X F, Zhang M, Zhou X D, et al. The research on auto-recognition method for analogy measuring instruments[C]//Proceedings of International Conference on Computer, Mechatronics,Control and Electronic Engineering. Los Alamitos:IEEE Computer Society Press, 2010: 207-210.
  • 9Achanta R, Shaji A, Smith K, et al. SLIC superpixels[D]. Vaud:Ecole Polytechnique Fédéral de Lausssanne (EPFL), 2010.
  • 10Cheng M M, Zhang G X, Mitra N J, et al. Global contrastbased salient region detection[C] //Proceedings of IEEE Conferenceon Computer Vision and Pattern Recognition. LosAlamitos: IEEE Computer Society Press, 2011: 409-416.

引证文献11

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部