期刊文献+

基于“最小差值法”的网络模型耗费代价研究

Finding All the Minimum Spanning Tree with the"Minimum Difference Method"Algorithm
下载PDF
导出
摘要 最小生成树算法是数据结构中,求网络模型耗费代价最优解的一个重要工具。现实生活中的连通网络模型复杂而多变,有时还需兼顾其它的目标,一棵最小生成树不足以解决问题,因此找出所有的最小生成树是很有必要的,在此提出一种新的寻找所有最小生成树的算法--最小差值法。无向连通图网络通过去掉连枝生成最小生成树,一个连枝加入最小生成树形成一个圈。这种算法是在一个圈中,用连枝的权与其它树枝的权分别作差,求最小差值。由最小差值是否为零,判断原有的最小生成树能否通过换进换出边,生成新的最小生成树。该算法能够有规律、高效率的寻找出所有的最小生成树。在找出的所有最小生成树方案中,选择符合实时情况的最小生成树方案,该方案即为网络耗费代价的最优解。 Minimum spanning tree algorithm is an important tool for network model for cost optimal solution. The problem of network connectivity is complex and changeable in real life, sometimes also need to pay attention to other targets .It is not enough to solve the problem with a minimum spanning tree. Therefore, it is necessary to find out all of the minimum spanning tree. It presents a new method of finding all of the minimum spanning tree-The minimum difference method. Undirected con-nected graph to generate the minimum spanning tree by removing the branches, the branches join a minimum spanning tree to a ring. This algorithm is , with even the branches of the right and the other branches of the ring for the poor, the minimum differ-ence in a circle .Through judgment the minimum value whether is zero ,the original judgment of minimum spanning tree can be swapped in and out of the side ,to generate the minimum spanning tree of new .The algorithm can find out all the minimum spanning tree efficiently and regularly.Among all the minimum spanning tree scheme, select the minimum spanning tree scheme that tallied with the actual situation, the scheme is the optimum solution of the network cost.
作者 肖玲玲 范海辉 XIAO Ling-ling, FAN Hai-hui (School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; 2.Department of Electronic and Communication Engineering, Jiangxi University of Science and Technology, Ganzhou 341000,China)
出处 《电脑知识与技术》 2014年第10期6650-6658,共9页 Computer Knowledge and Technology
关键词 网络耗费代价 连通网络模型 最小生成树 算法 最小差值法 Network cost Communication network model minimum spanning tree algorithm the minimum difference meth-od
  • 相关文献

参考文献13

  • 1王化宇.最小生成树算法及其应用[J].内蒙古科技与经济,2011(6):72-73. 被引量:6
  • 2段东东.最小生成树算法及其应用[J].西安航空技术高等专科学校学报,2010,28(1):55-57. 被引量:4
  • 3袁卫东.最小生成树的算法及其应用[J].科学技术与工程,2009,9(15):4409-4412. 被引量:5
  • 4Salama H F, Reeves D S, Viniotis Y. The delay-constrained minimum spanning tree problem[C]//Computers and Communications, 1997. Proceedings., Second IEEE Symposium on. IEEE, 1997: 699-703.
  • 5Kruskal J B. On the shortest spanning subtree of a graph and the traveling salesman problem[J]. Proceedings of the American Mathe- matical society, 1956, 7(1): 48-50.
  • 6Prim R C. Shortest connection networks and some generalizations[J]. Bell system technical journal, 1957, 36(6): 1389-1401.
  • 7管梅谷.求最小树的破圈法[J].数学的实践与认识,1975,5(4):38-41.
  • 8Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische mathematik, 1959,1(1):269-271.
  • 9Edmonds J. Paths, trees, and flowers[J]. Canadian Journal of mathematics, 1965,17(3):449-467.
  • 10Thomassen C. Spanning trees and orientations of graphs[J]. Journal of Combinatorics, 2010,1(2):101-111.

二级参考文献7

  • 1陈小娟.最小生成树问题[J].福建电脑,2005,21(11):147-147. 被引量:3
  • 2Cormen TH,Lleiserxon CE,Rivest RL.Introducton to Algorithms[M].USA:MIT Press,2001.
  • 3刘瓒武.应用图论[M].长沙:国防科技大学出版社,2006.
  • 4候识忠.数据结构算法程序集[M].北京:中国水利水电出版社,2005.
  • 5蔡子经.数据结构教程[M].上海:复旦大学出版社,2005.
  • 6陈有祺.数据结构[M].天津:南开大学出版社,2002.
  • 7Fred Buckley,Marty Lewinter.图论简明教程[M].李慧霸,王风芹,译.北京:清华大学出版社,2005.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部