摘要
The injector of C-ADS (Chinese Accelerator Driven Sub-critical System) project is a high current, fully super-conducting proton accelerator. Meanwhile, a BLM system is indispensable for this facility, especially in low energy segments. This paper presents some basic simulations for 10 MeV proton by Monte Carlo program FLUKA, as well as the distributions on different secondary particles in three aspects: angular, energy spectrum, and current. These results are beneficial to selecting the detector type and its location and determining its dynamic range matching different requirements for both fast and slow beam loss. Furthermore, in this paper the major impact of the background is also analyzed, such as superconducting cavity X radiation and radiation caused by material activation. This work is meaningful in BLM system research.
The injector of C-ADS (Chinese Accelerator Driven Sub-critical System) project is a high current, fully super-conducting proton accelerator. Meanwhile, a BLM system is indispensable for this facility, especially in low energy segments. This paper presents some basic simulations for 10 MeV proton by Monte Carlo program FLUKA, as well as the distributions on different secondary particles in three aspects: angular, energy spectrum, and current. These results are beneficial to selecting the detector type and its location and determining its dynamic range matching different requirements for both fast and slow beam loss. Furthermore, in this paper the major impact of the background is also analyzed, such as superconducting cavity X radiation and radiation caused by material activation. This work is meaningful in BLM system research.
基金
Supported by XDA03000000