期刊文献+

低复杂度的自适应置信差分迭代译码算法 被引量:1

An Adaptive Belief Propagation Difference-map Iterative Decoding Algorithm with Low Complexity
下载PDF
导出
摘要 针对中短码长的低密度奇偶校验规则码(Low Density Parity Check,LDPC)规则码,该文采用消息更新规则改进和因子图变换方法,提出一种低复杂度差分迭代译码算法。在置信传播算法的基础上,仅当变量节点的消息值振荡时引入差分映射策略,得出一种选择性的置信差分规则,自适应地调整校验节点消息的归一化系数,提高译码性能。同时,采用展开校验节点的图变换方法,将计算复杂度从随节点度分布指数性增长降至线性增长。分别在高斯白噪声信道和瑞利衰落信道下进行仿真实验,结果表明该算法和基于图变换的其他低复杂度译码算法相比,性能优越且复杂度低,和对数似然比的置信传播算法(LLR-BP)相比,高信噪比区域内的性能优异,低信噪比区域内的计算复杂度明显降低。 In this paper, an adaptive belief difference-map propagation algorithm with low complexity is proposed for short and middle length LDPC regular codes by modifying message update rules and transforming factor graph. To improve decoding performance, a new selective belief propagation difference-map message update rule is introduced by borrowing the difference-map strategy for variable node messages oscillation, and the normalized factor is adjusted adaptively. Meanwhile, the computational complexity exponential in the degree of check node is decreased into linear in degree by opening the check node. The simulation results illustrate that the proposed algorithm has better performance and lower complexity than other iterative decoding algorithms based on the modified factor graphs. Compared to the LLR-BP, it better performance at high Eb/N0 and the computational complexity is apparently downgraded at low Eb/N0.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第11期2640-2645,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61172086 61201251) 国家自然科学基金联合基金(U1204607) 博士后科研启动基金(2011012)资助课题
关键词 低密度奇偶校验迭代译码算法 差分映射机制 因子图变换 自适应归一化系数 LDPC iterative decoding algorithm Difference-Map (DM) strategy Transforming factor graph Adaptive normalized factor
  • 相关文献

参考文献15

  • 1Loeliger H A. An introduction to factor graphs[J]. IEEE Signal Processing Magazine, 2004, 21(1): 28-41.
  • 2Chen Jinghu and Fossorier M P C. Near optimum universal belief propagation based decoding of low-density parity check codes[J]. IEEE Transactions on Communications, 2002, 50(3): 406-414.
  • 3Hu Zi-xia and Liu Hui. A low-complexity LDPC decoding algorithm for hierarchical broadcasting: design and implementation[J]. IEEE Transactions on Vehicular Technology, 2013, 62(4): 1843-1849.
  • 4Laendner S and Milenkovic O. LDPC codes based on latin squares: cycle structure, stopping set, and trapping set analysis[J]. IEEE Transactions on Communications, 2007, 55(2): 303-312.
  • 5Milenkovic O, Soljanin E, and Whiting P. Asymptotic spectra of trapping sets in regular and irregular LDPC code ensembles[J]. IEEE Transactions on Information Theory, 2007, 53(1): 39-55.
  • 6Gounai S, Ohtsuki T, and Kaneko T. Modified belief propagation decoding algorithm for low-density parity check code based on oscillation[C]. Proceedings of the IEEE 63rd Vehicular Technology Conference, Melbourne vic, 2006, 3: 1467-1471.
  • 7Yedidia J S, Wang Yige, and Draper S C. Divide and concur and difference-map BP decoders for LDPC codes[J]. IEEE Transactions on Information Theory, 2011, 57(2): 786-802.
  • 8Gravel S and Elser V. Divide and concur: a general approach to constraint satisfaction[J]. Physical Review E, 2008, 78(3): 1-4.
  • 9Wymeersch H, Penna F, and Savic V. Uniformly reweighted belief propagation for estimation and detection in wireless networks[J]. IEEE Transactions on Wireless Communications, 2012, 11(4): 1587-1595.
  • 10Liu Jing-jing and de Lamare R C. Low-latency reweighted belief propagation decoding for LDPC codes[J]. IEEE Communications Letters, 2012, 16(10): 1660-1663.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部