期刊文献+

碳纤维增强聚氨酯弹性体复合材料的研究 被引量:1

Preparation and Properties of Carbon Fiber Reinforced Polyurethane Elastomer Composites
下载PDF
导出
摘要 为了制备具有优良导热性能、耐热性能和力学性能的新型聚氨酯(PUR)弹性体复合材料,采用预聚体法以聚四氢呋喃醚二醇(PTMG),2,4-甲苯二异氰酸酯(TDI)和碳纤维(CF)粉末为原料,制备了不同CF含量的CF增强PUR弹性体复合材料。对其进行了导热性能、耐热性能和力学性能测试,并通过扫描电子显微镜考察了CF在PUR基体中的分散状态。红外测试结果表明,CF表面含有可以与PUR基体发生反应的—OH和—COOH。当CF质量分数为0.3%时,CF可以均匀地分散在PUR基体中,CF增强PUR弹性体复合材料的拉伸强度、撕裂强度、100%和300%定伸强度、玻璃化转变温度和热导率分别为42.24 MPa,94.03 k N/m,9.33 MPa,24.87 MPa,96.7℃和0.138 5 W/(m·K),比纯PUR弹性体分别提高了27.8%,32.2%,76.4%,102.2%,18.5℃和26.4%,而断裂伸长率为367.62%,仅下降19.5%。 In order to prepare the advanced polyurethane(PUR) elastomer composites which possesses high thermal conductive property,heat resistance property and mechanical property,the carbon fiber(CF) reinforced PUR elastomer composites were prepared through pre-polymerized method with polytetramethylene glycol(PTMG),2,4-toluene diisocyanate(TDI) and CF powder as raw materials. The thermal conductive property,heat resistance property and mechanical properties of the composites were studied, and the disperse situation was studied by SEM. FTIR results show that there are —COOH and —OH on the surface of the CF which could occur chemical reaction with the matrix. When the mass fraction of CF is 0.3%,CF can be well dispersed in the PUR matrix,and the tensile strength,tear strength,100%elongation strength,300%elongation strength,glass transition temperature and thermal conductivity of CF reinforced PUR elastomer composites are 42.24 MPa,94.03 kN/m,9.33 MPa,24.87 MPa,96.7 ℃and 0.138 5 W/(m·K),with the incrcement of 27.8%,32.2%,76.4%,102.1%,18.5℃and 26.4%with respect to the pure PUR, however, the elongation at break is 367.62%,only decreased by 19.5%.
出处 《工程塑料应用》 CAS CSCD 北大核心 2014年第11期23-27,共5页 Engineering Plastics Application
关键词 碳纤维 聚氨酯 力学性能 耐热性能 导热性能 carbon fiber polyurethane mechanical property heat resistance property thermal conductive property
  • 相关文献

参考文献9

  • 1Jin Hui, Zhang Yuge, Wang Chengshuang, et al. Thermal, mechanical, and morphological properties of soybean oil-based polyurethane/epoxy resin interpenetrating polymer network (1PNs) [J]. Journal of Thermal Analysis and Calorimetry. 2014, 117(2):773- 781.
  • 2Kara F, Aksoy E A. Yuksekdag Z, et al. Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties[J]. Carbohydrate Polymers, 2014(4):39-47.
  • 3刘厚均.聚氨酯弹性体手册[M].第2版.北京:化学工业出版社,2012.
  • 4李仕通,彭超义,邢素丽,肖加余.导热型碳纤维增强聚合物基复合材料的研究进展[J].材料导报,2012,26(13):79-84. 被引量:19
  • 5Han Seungjin, Chung D D L. Increasing the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation[J] .Composites Science and Technology, 2011,71 ( 16):1 944-1 952.
  • 6Zhao Gai, Wang Tingmei, Wang Qihua. Surface modification of carbon fiber and its effects on the mechanical and tribological properties of the polyurethane composites[J]. Polymer Composites, 2011,32(11):1 726-1 733.
  • 7Gaxiola D L, Keith J M. Mo N, et al. Predicting the thermal conductivity of multiple carbon fillers in polypropylene-based resins[J]. Journal of Composite Material, 2011,45( 12): 1 271-1 284.
  • 8徐睿杰,雷彩红,杨志广,廖敦锃,刘舜莉.聚丙烯/膨胀石墨/碳纤维导热复合材料[J].塑料,2012,41(1):34-36. 被引量:11
  • 9Bagdi K, MoInar K, Puk/mszky Jr B, et al. Thermal analysis of the structure of segmented polyurethane elastomers[J].Journal of Thermal Analysis and Calorimetry, 2009,98(3):825-832.

二级参考文献44

  • 1周溪华.沥青基碳纤维的研制与开发[J].合成纤维工业,1993,16(2):36-42. 被引量:5
  • 2Luyt A S, Molefi J A, Krump H. Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites [ J ]. Polymer Degradation and Stability, 2006, 91(7) :1629 - 1636.
  • 3Zhao X W, Ye L. Study on the thermal conductive polyoxymethylene/ graphite composites [ J ]. Journal of Applied Polymer Science, 2009, 111 (2) :759 -767.
  • 4Sebnem K, Guralp O,Ayse A. Properties of thermally conductive micro and nano size boron nitride reinforced siticon rubber composites [J]. Thermochimica Acta,2010,499 ( 1 - 2 ) :40 - 47.
  • 5(;hen Y M, Ting J M. Ultra high thermal conductivity poly- mer composites[J]. Carbon, 2002,40 (3) : 359.
  • 6Deborah D L Chung. Composite materials: Science and ap- plications[M]. Springer London Dordrecht Heidelberg New York,2010.
  • 7Han Zhidong, Fina Alberto. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review[J]. Prog Polym Sci,2011,36(7):914.
  • 8Manocha I. M, Warrier A, Manocha S, et al. Thermophysi- cal properties of densified pitch based carbon/carbon mate- rials-- I. Unidirectional composites[J]. Carbon, 2006,44:480.
  • 9John R, Atxaga G, Frerker H J, et al. Advancement of multifunctional support structure technologies (AMFSST) [J]. Therminic, 2007,17-19 : 98.
  • 10Demain A, Issi J P. The effect of fiber concentration on the thermal conductivity of a polycarbonate pitch-based carbon fiber composites[J]. J Compos Mater, 1993,27(7): 668.

共引文献28

同被引文献12

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部