期刊文献+

食饵具有庇护的时滞捕食系统稳定性和Hopf分支(英文) 被引量:1

Stabilityand Hopf bifurcation analysis for a competitive predator-preysystem with delayand preyrefuge
下载PDF
导出
摘要 研究了一类具有2个食饵、1个捕食者,且食饵具有庇护所的Holling-II类时滞竞争捕食系统.结果表明,当时滞的值足够小时,系统的正平衡点是局部渐近稳定的.一旦时滞的值超过临界值,系统将失去稳定性并产生周期解.并利用规范型方法和中心流形定理确定了Hopf分支的方向和周期解的稳定性.最后,给出数值仿真验证了理论结果的正确性. This paper is concerned with a three-component model consisting of two prey and one predator with time delay and the inclusion of Holling type-Ⅱ response function incorporating a constant proportion of prey refuge.It is shown that the positive equilibrium of the system is locally asymptotically stable when the time delay is small enough.Changes of stability of the positive equilibrium will cause bifurcating periodic solutions as the time delay passes through a critical value.Particularly,the direction of Hopf bifurcation and the stability of the periodic solutions are determined by using the normal form method and center manifold theorem.Finally,the numerical simulations are carried out to verify our theoretical findings.
作者 张子振 汪凯
出处 《浙江大学学报(理学版)》 CAS CSCD 2014年第6期642-649,共8页 Journal of Zhejiang University(Science Edition)
基金 Supported by National Science Foundation of the Higher Education Institutions of Anhui Province(KJ2013A003,KJ2013B137)
关键词 HOPF分支 捕食系统 食饵庇护 周期解 时滞 Hopf bifurcation predator-prey system prey refuge periodic solution time delay
  • 相关文献

参考文献18

  • 1CHEN Lansun, CHEN Fengde, CHEN Lijuan. Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge[J]. Nonlinear Analysis: Real World Applications, 2010,11 ( 1 ) : 246-252.
  • 2KRIVAN V. On the Gause predator-prey model with a refuge: a fresh look at the history[J]. Journal of Theoretical Biology, 2011,274 ( 1 ) : 67-73.
  • 3PAL A K, SAMANTA G P. Stability analysis of an eco-epidemiological model incorporating a prey refuge [J]. Nonlinear Analysis: Modelling and Control,2010, 15(4) :473-491.
  • 4JANA S, CHAKRABORTY M, CHAKRABORTY K, et al. Global stability and bifurcation of time delayed prey-predator system incorporating prey refuge [J]. Mathematics and Computers in Simulation, 2012, 85(11) :57-77.
  • 5CHAKRABORTY K, CHAKRABORTY M, KAR T K. Regulation of a prey-predator fishery incorporating prey refuge by taxation: a dynamic reaction model[J]. Journal of Biological Systems, 2011,19 (3) : 417-445.
  • 6LI Yongkun, LI Changzhao. Stability and Hopf bifurcation analysis on a delayed Leslie-Gower predator- prey system incorporating a prey refuge [J]. Applied Mathematics and Computation,2013,219(9):4576-4589.
  • 7LIU X, HAN M. Chaos and Hopf bifurcation analysis for a two species predator-prey system with prey refuge and diffusion[J]. Nonlinear Analysis: Real World Applications, 2011,12 (2) : 1047 - 1061.
  • 8SARWARDI S, MANDAL P K, RAY S. Analysis of a competitive prey-predator system with a prey refuge [J]. BioSystem,2012,110(3) :133-148.
  • 9WANG Kai, ZHU Yarding. Periodic solutions, permanence and global attractivity of a delayed impulsive prey-predator system with mutual interference[J]. Nonlinear Analysis: Real World Apph'cations, 2013,14(2) : 1044-1054.
  • 10WANG Changyou, WANG Shu, YANG Fuping, et al. Global asymptdtic stability of positive equilibrium of three-species Lotka-Volterra mutualism models with diffusion and delay effects [ J ]. Applied Mathematical Modelling, 2010,34 (12) : 4278-4288.

同被引文献6

  • 1KAR T K. Stability Analysis of a Prey-predator Model Incorporating a Prey Refuge t J ]- Communi- cations in Nonlinear Science and Numerical Simula- tion,2005,10 (6) :681 - 691.
  • 2CHEN F D, CHEN L J, XIE X D. On a Leslie-gow- er Prsedator-prey Model Incorporating a Prey Refuge I J ]. Nonlinear Asnalysis : Real World Applications, 2009,10 (5) :2905 - 2908.
  • 3HASSELL M P. Mutual Interference between Searching Insect Parasites I J ]. The Journal of Ani- mal Ecology, 1971,40 ( 2 ) :473 - 486.
  • 4LV Y S, DU Z J. Existence and Global Attractivity of a Positive Periodic Solution to a Lotka-volterra Model with Mutual Interference and Holling III Type Functional Response E J ]. Nonlinear Analysis : Real World Applications, 2011, 12 ( 6 ) ~ 3654 - 3664.
  • 5CHEN L J, CHEN F D. Global Analysis of a Har- vested Predator-prey Model Incorporating a Constant Prey Refugee J]. International Journal of Biomathe- matics ,2010,3 ( 2 ) :205 - 223.
  • 6陈江彬.具避难所的捕食者-食饵系统的定性研究[J].福州大学学报(自然科学版),2014,42(6):812-818. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部