期刊文献+

基于集成学习思想的深度图像遮挡边界检测方法 被引量:6

Occlusion Boundary Detection Method for Depth Image Based on Ensemble Learning
下载PDF
导出
摘要 针对现有深度图像遮挡检测方法不能有效地检测出深度信息变化不明显的遮挡边界点的状况,提出了8邻域总深度差特征和最大面积特征,并定义了计算方法。在此基础上,提出一种新的基于集成学习思想的深度图像遮挡边界检测方法,该方法结合所提新特征及现有遮挡相关特征训练基于决策树的AdaBOOst分类器,完成对深度图像中遮挡边界点及非遮挡边界点的分类,实现对深度图像中遮挡边界的检测。实验结果表明,同已有方法相比,所提方法具有较高的准确性和较好的普适性。 The existing occlusion detection method for depth image can not effectively detect the occlusion boundary point with less obvious depth change, this status should be changed. The eight neighborhood total depth difference feature and maximal area feature are proposed firstly, and then the calculation methods for these two new features are defined. On this basis, a new occlusion detection approach based on ensemble learning is proposed, which combines the proposed features and existing occlusion related features to train the decision tree-based AdaBoost classifier to classify the pixel of depth image into occlusion boundary point or non-occlusion boundary point. The experimental results show that, compared with the existing methods, the proposed approach has higher accuracy and better universality.
出处 《计量学报》 CSCD 北大核心 2014年第6期569-573,共5页 Acta Metrologica Sinica
基金 国家自然科学基金(61379065) 河北省自然科学基金(F2014203119)
关键词 计量学 遮挡边界检测 集成学习 深度图像 8邻域总深度差特征 最大面积特征 Metrology Occlusion boundary detection Ensemble learning Depth image Eight neighborhood total depth difference feature Maximal area feature AdaBoost
  • 相关文献

参考文献17

  • 1Stein A, Hebert M. Occlusion boundaries from motion: Low-level detection and mid-level reasoning [ J ]. International .Iournal of Computer Vision, 2009,82 ( 3 ): 325 - 357.
  • 2Hoiem D, Efros A, Heberl M. Recovering occlusion boundaries from an image [ J ]. Internatiomd Jourmd qf Computer Vi.:ion ,2011,91 ( 3 ) :328 - 346.
  • 3蒋剑峰,姜招喜,柴国钟,张青春,鲁聪达.螺纹影像法测量中投影遮挡问题的研究[J].计量技术,2012(10):29-33. 被引量:2
  • 4Alvarez L, Deriche R, Papadopoulo T. Symmetrical dense optical flow estimation with occlusions detection [ J ]. International Journal of Comtm.ter :sion, 2007, 75(3) :371 -385.
  • 5He X, Yuille A. occlusiotl botmdarv dtection usingpseudo-depth [ C ]// Proceedings of the European Conference on Computer Vision, Heidelberg, Germany: Springer Verlag, 2010,539 - 552.
  • 6Humayun A, Aodha O M, Brostow G J. Learning to find occlusion regions [ C ]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Piscataway, USA: IEEE, 2011, 2161 -2168.
  • 7Chen D, Yuan Z, Zhang G, et al. Detecting occlusion boundaries via saliency netwo,'k [c]// Proceedings of International Conference on Pattern Recognition, Tsukuba, Piseataway, USA : IEEE, 2012,2569 - 2572.
  • 8Park J C, Kim S M, Lee K H. 3D mesh construction from depth images with occlusion[ C ]// Lecture Notes in Computer Science, Heidelberg, Germany: Springer V:rlag, 2006,770 - 778.
  • 9Merehan P, Vazquez A S, Salamanca S. 3D scene analysis from a single range image through occlusion graphs [ J ]. Pattern Recognitior Letten, 2008,29 ( 8 ) : 1105 -1116.
  • 10Jang 1 Y, ChoJ H, SeoM K, etal. Depth image based 3 D human modeling resolving self-occlusion [ C ]// ACM SIGGRAPH Posters, New Ym'k, USA :ACM,2008,105.

二级参考文献26

共引文献12

同被引文献30

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部