期刊文献+

一种改进的高斯混合概率假设密度SLAM算法 被引量:6

An improved Gaussian mixture PHD SLAM algorithm
原文传递
导出
摘要 针对高斯混合概率假设密度SLAM(GMPHD-SLAM)算法存在的估计精度低和计算代价高的问题,提出一种无迹高斯混合概率假设密度SLAM算法(unscented-GMPHD-SLAM).其主要特点在于:将无迹卡尔曼滤波器应用于机器人位姿粒子权重计算及概率假设密度更新过程中,可提高算法整体估计性能;将更新的高斯项按照传感器视域分类,有效降低了算法计算量.通过仿真实验,将所提出算法与传统PHD-SLAM算法进行比较,结果表明该算法在提高估计精度和降低计算负担方面是十分有效的. For two problems in Gaussian mixture probability hypothesis density SLAM(GMPHD-SLAM) algorithm of low estimation accuracy and high computational cost,the GMPHD-SLAM algorithm based on unscented transform,called unscented-GMPHD-SLAM,is proposed.The main contribution lies that:the unscented Kalman filter is used in the calculation of particle's weight and PHD update process,which improves the performance of the algorithm;the updated Gaussian components are classified based on the sensor's field of view(FoV),which reduces the computational cost.The proposed algorithm is compared with the traditional PHD-SLAM algorithm.The results show that the proposed algorithm is effective in accuracy improvement and reduction of computational cost.
出处 《控制与决策》 EI CSCD 北大核心 2014年第11期1959-1965,共7页 Control and Decision
基金 国家863计划项目(SS2012AA052302) 国家自然科学基金项目(61134001 60905055 51274144) 河北省自然科学基金项目(F2012210031) 博士后科学基金项目(2013T60197) 中央高校基本科研业务费项目(2014JBM014)
关键词 移动机器人 同时定位与地图构建 高斯混合概率假设密度 无迹卡尔曼滤波器 mobile robot SLAM Gaussian mixture probability hypothesis density unscented Kalman filter
  • 相关文献

参考文献17

  • 1Smith R,Self M,Chesseman P.Estimating uncertain spatial relationships in robotics[C].Proc of IEEE Int Conf on Robotics and Automation.North Carolina: IEEE Press,1987: 850-858.
  • 2Matheron G.Random sets and integral geometry[M].New York: Wiley,1975: 21-25.
  • 3Goodman I R,Mahler R,Nguyen H.Mathematics of data fusion[M].Boston: Kluwer Academic Publishers,1997: 90-95.
  • 4Mahler R.Statistical multisource multitarget information fusion[M].Norwood: Artech House,2007: 49-51.
  • 5Mahler R.Multi-target Bayes filtering via first-order multi-target moments[J].IEEE Trans on Aerospace and Electronic Systems,2003,39(4): 1152-1178.
  • 6Mahler R.PHD filters of higher order in target number[J].IEEE Trans on Aerospace and Electronic Systems,2007,43(4): 1523-1543.
  • 7Vo B N,Singh S,Doucet A.Sequential Monte Carlo methods for multi-target filtering with random finite sets[J].IEEE Trans on Aerospace and Electronic Systems,2005,41(4): 1224-1245.
  • 8Vo B N,Ma W K.The gaussian mixture probability hypothesis density filter[J].IEEE Trans on Signal Processing,2006,54(11): 4091-4104.
  • 9吴刚,韩崇昭,闫小喜,连峰.基于熵分布的概率假设密度滤波器高斯混合实现[J].控制与决策,2014,29(1):89-93. 被引量:3
  • 10吴鑫辉,黄高明,高俊.未知噪声统计下多模型概率假设密度粒子滤波算法[J].控制与决策,2014,29(3):475-480. 被引量:5

二级参考文献2

共引文献6

同被引文献30

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部