期刊文献+

非定常运动下的激波/边界层干扰分离特性研究 被引量:1

Unsteady shock/boundary layer interaction of compression corner at movement conditions
下载PDF
导出
摘要 采用高精度数值方法求解非定常雷诺平均N-S方程和单自由度强迫俯仰运动方程,研究二维压缩拐角模型在等速抬头/低头和周期性俯仰振动等运动方式下的非定常激波/边界层干扰问题,考察角速度、振幅和频率等参数对分离区非定常变化规律的影响。结果表明,压缩拐角等速抬头运动时分离区减小、等速低头运动时分离区增大,周期性俯仰振动时分离点、再附点以及分离区大小的变化都与模型振动频率相同。与相同来流条件下定姿态计算对比分析表明,压缩拐角壁面运动产生的非定常迟滞作用使分离区大小变化减慢,俯仰振动振幅对分离区大小变化影响较大、而对变化的相位影响较小,而振动频率的改变对分离区大小变化的相位影响很大、对分离区大小影响较小。 Unsteady shock/boundary layer interaction generated by 2-D compression corner under move-ment conditions is studied by numerical calculating the unsteady Reynolds averaged N-S equations,and the unsteady characteristics of separation zone during the process of pitching up,pitching down and periodically oscillating are analyzed.The numerical results show that when the model pitches up,the size of separation region becomes smaller,and when the model pitches down,the size of separation region becomes larger. The positions of separation points,reattachment points and shock oscillate periodically as the oscillation of the compression corner and the frequency of the oscillation agrees with each other.When the amplitude of model increases,the change of separation region becomes wider.When the frequency of model increases,the position of the maximal and minimal separation region is distinctly changed during the oscillation of compres-sion corner.Furthermore,the results are compared to those calculated at static conditions,and conclusion is achieved that the variation of separation region is dominated by both of the pitching angle and the unsteady movement effects.Changing of pitching angel leads to the change of free stream Mach number,which have influence on the separation flow.
出处 《空气动力学学报》 CSCD 北大核心 2014年第5期610-617,共8页 Acta Aerodynamica Sinica
基金 国家自然科学基金(90716015 11172325)
关键词 激波/边界层干扰 分离流动 压缩拐角 姿态运动 非定常雷诺平均N-S方程 shock/boundary layer interaction flow separation compression corner unsteady move-ment RANS
  • 相关文献

参考文献15

  • 1FERRI A. Experimental results with airfoils tested in the high speed tunnel at Guidonia[R]. NACA TM-946, 1940.
  • 2张红杰,马晖扬,童秉纲.高超声速复杂流动中湍流模式应用的评估[J].空气动力学学报,2001,19(2):210-216. 被引量:7
  • 3DOLLING D S. Fifty years of shock-wave/boundary-layer in- teraction researeh What next? [J]. AIAA Journal, 2001, 39 (8) : 1517-1531.
  • 4KNIGHT D, JOSE L, DIMITRIS D, et al. Assessment of CFD capability for prediction of hypersonic shock interactions[J]. Progress in Aerospace Sciences, 2012, 48-49 : 8-26.
  • 5KNIGHT D, HONG Y, ARGYRIS G P, et al. Advances in CFD prediction of shockwave turbulent boundary layer interac- tions[J]. Progress in Aerospace Sciences, 2003, 39 (2-3) : 121- 184.
  • 6ZHELTOVODOV A. Some advances in research of shock wave turbulent boundary layer interactions[R]. AIAA 2006-496.
  • 7JACK R E. Numerical simulations of shock/ boundary layer in- teractions using time dependent modeling techniques: a survey of recent results[J]. Progress in Aerospace Sciences, 2008, 44 (6) : 447-465.
  • 8武宇,易仕和,陈植,张庆虎,冈敦殿.超声速层流/湍流压缩拐角流动结构的实验研究[J].物理学报,2013,62(18):308-319. 被引量:12
  • 9DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes [J]. Journal of Computational Physics, 2000, 165: 22-44.
  • 10SETTLES G S, FITZPATRICK T J, BOGDONOFF S M. De tailed study of attached and separated compression corner flow- fields in high reynolds number supersonic flow[J]. AIAA Jour- nal, 1979, 17(6): 579-585.

二级参考文献25

  • 1高慧,傅德薰,马延文,李新亮.Direct Numerical Simulation of Supersonic Turbulent Boundary Layer Flow[J].Chinese Physics Letters,2005,22(7):1709-1712. 被引量:8
  • 2Settles G S,Fitzpatrick T J, Bogdonoff S M. Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow [ J ]. A IAA Journal, 1979,17 ( 6 ) : 579 - 585.
  • 3Settles G S, Bogdonoff S M, Vas I E. Incipient separation of a supersonic turbulent boundary layer at high Reynolds number[ J]. AIAA Journal, 1976,14 ( 1 ) :50 - 56.
  • 4Settles G S, Vas I E, Bogdonoff S M. Details of a shock-separated turbulent boundary layer at a compression corner [ J ]. AIAA Journal,1976,14(12) :1709 - 1715.
  • 5Settles G S,Dodson L J. Hypersonic shock/boundary-layer interaction database [ R ]. NASA-CR-177577,1991.
  • 6Martin M P, Smits A, Wu Minwei ,et al. The turbulence structure of shockwave and boundary layer interaction in a compression corner[ R ]. AIAA-2006-.497,2006.
  • 7Wilcox D C. Turbulence modeling for CFD [ M ]. La Canada: DCW Industries, 1994:203 - 205.
  • 8Spalart P R,Allmaras S R. A one-equation turbulence model for aerodynamic flows [ R ]. AIAA-92-0439,1992.
  • 9Wilcox D C. Reassessment of the scale determining equation for advanced turbulence models [ J ]. AIAA Journal, 1988,26 ( 11 ) : 1299 - 1310.
  • 10Meter F. Zonal two equation k-ω turbulence models for aerodynamic flows [ R ]. AIAA -93 -2906,1993.

共引文献25

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部