期刊文献+

沉淀强化钢中两相区NiAl相和富Cu相的析出特点 被引量:5

PRECIPITATION CHARACTERIZATION OF Ni Al AND Cu-RICH PHASES IN DUAL-PHASE REGION OF PRECIPITATION STRENGTHENING STEEL
原文传递
导出
摘要 沉淀强化钢在900℃固溶2 h后水淬,500℃时效1 h,利用原子探针层析技术(APT)研究了残余奥氏体和马氏体两相区强化相的析出特点.结果表明,残余奥氏体中没有析出相,马氏体和马氏体/残余奥氏体界面处均有强化相析出,马氏体中靠近界面处有一层析出贫化区.界面处强化相的等效半径和间距均大于马氏体中的强化相,界面处富Cu相和Ni Al相中Cu,Ni和Al的含量均大于马氏体中的富Cu相和Ni Al相,而且界面处富Cu相和Ni Al相的分离趋势要大于马氏体,这是因为界面处存在大量缺陷,促进了强化相的长大,使得界面处和马氏体中的强化相处于长大的不同阶段. Precipitation strengthening plays an important role on improving the mechanical properties of steels, Ni Al and Cu-rich phases are two kinds of common precipitates. This work aims to reveal the precipitation characteristics of these two phases in martensite and retained austenite in precipitation strengthening steel by atom probe tomography(APT). The hot rolled samples were aged at 500 ℃ for 1 h after solution treatment at 900 ℃for 2 h, followed by microstructure analysis. The results show that Ni Al and Cu- rich phases form in martensite phase as well as at martensite/austenite phase boundaries, while no precipitate develops in retained austenite. Precipitation was not observed near the phase boundaries in martensite. Equivalent radius, spacing and concentration of the strengthening phases at phase boundary are larger than that inside martensite. In addition, Ni Al phase tend to separate from Cu-rich phase, and the separated tendency becomes stronger at phase boundaries than in martensite.Besides, the growth of Ni Al and Cu- rich phases at phase boundary differs from that within martensite, which should be induced by the defect density difference between them.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2014年第11期1305-1310,共6页 Acta Metallurgica Sinica
基金 国家自然科学基金钢铁联合基金培育项目U1460103 浙江省工量刃具重点实验室开放基金项目ZD201310 上海市重点学科建设项目S30107资助~~
关键词 残余奥氏体 马氏体 相界面 强化相 原子探针层析技术 retained austenite martensite phase boundary strengthening phase atom probe tomography
  • 相关文献

参考文献4

二级参考文献56

  • 1孙文山,丁桂荣,罗铭蔚,王智慧,宋爱英.Ce在双相不锈钢中的作用[J].金属学报,1996,32(3):245-248. 被引量:15
  • 2吕曼祺,陈四红,董加胜,杨柯.含Cu铁素体抗菌不锈钢的抗菌性能[J].材料研究学报,2005,19(6):581-588. 被引量:17
  • 3Isheim D,Kolli R P,Fine M E,Seidman D N.Scr Mater 2006,55,35.
  • 4Masuyama F.ISIJ Int 2001,41,612.
  • 5Sawaragi Y,Ogawa K,Kato S,Matori A,Hirano S.Sumitomo Search,1992; 48:50.
  • 6Sourmail T,Bhadeshia H K D H.Metall Mater Trans,2004; 36A:23.
  • 7Mimura M,Ishitsuka H.In:Jaske C E ed.,2007 Proc ASME Pressure Vessels and Piping Conterence-8the International Conference on Creep and Fatigue at Elevated Temperatures-CREEP,New York:ASME,2008:197.
  • 8Viswanathan R,Henry J F,Tanzosh J,Stanko G,Shingledecker J,Vitalis B.J Mater Eng Perform 2005,14,281.
  • 9Sawaragi Y,Hirano S.In:Jono M,Inone T eds.,Proc Int Conf Mech Behav Mater,New York:Pergamon Press Inc,1991; 4:589.
  • 10Iseda A,Okada H,Semba H,Igarashi M.Energ Mater,2007; 2:199.

共引文献39

同被引文献41

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部