期刊文献+

RBF与加权质心相结合的室内无线定位算法 被引量:1

A new indoor wireless positioning algorithm combining RBF and weighted centroid
下载PDF
导出
摘要 针对传播路径损耗模型的参数,极易受室内障碍物等环境因素影响,导致定位精度低的问题.利用RBF(径向基函数)神经网络算法替代损耗模型,拟合RSSI(接收信号强度)值与距离的关系.采集室内RSSI值和其对应的距离值的实测数据,利用实测数据训练RBF神经网络,建立RSSI-距离拟合模型;利用拟合模型将经过处理的RSSI值转换为距离值,并将距离值按从小到大排序;取前3个离定位节点较近的固定节点的信息,进行加权质心定位计算.研究结果表明:RBF算法的定位精度比路径传播损耗模型算法提高了34.5%,且略高于BP算法的定位精度.在相同的室内环境下,RBF算法能更好地克服环境因素对距离计算的干扰,提高室内定位的精度和稳定性. Considing that the propagation path loss model's parameters are easy to be affected by indoor obstacles and other environmental factors, which would result in a low positioning accuracy, a new ranging method using RBF neural network algorithm, instead of the propagation path loss model to fit the RSSI-distance model is developed. First collect RSSI values and their corresponding distance data measured indoor, trained RBF neural network with the measured data and establish the RSSl-distance fitting model; then use the fitting model convert the pretreated RSSI values into distance data, and sort the distance data; take the former three fixed node information, and calculate coordinates with the weighted centroid localization algorithm. Experiment results show that: the positioning precision of RBF algorithm is improved by 34.5% compared with the propagation path loss model, and slightly higher than the BP algorithm. At the same indoor environment, RBF algorithm can better overcome the interference of environmental factors on the distance calculation, and improve the indoor positioning accuracy and stability.
作者 李静 黄敏
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2014年第10期1397-1401,共5页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金资助项目(61275155 61271384) 江苏省自然科学基金资助项目(BK2011148)
关键词 无线传感网络 路径损耗模型 信号接受强度 径向基网络 室内定位 加权质心 wireless sensor network propagation path loss model RSS/ RBF indoor location: weighted centroid
  • 相关文献

参考文献12

二级参考文献48

共引文献86

同被引文献16

  • 1RAHMAN K C.A survey on sensor network[J].Journal of Computerand Information Technology,2010,12(1 ):76-87.
  • 2MAO G,FIDAN B,ANDERSON B.Wireless sensor network localization teclmiques[J].Computer Networks.007,51(10):2 529-2 553.
  • 3HE T, HUANG C,BLUM B M,et al.Range-free localization schemes for large scale sensor networks[C]//Proceedings of the 9th Annual International Conference on Mobile Computing and Networking. Sandiego:ACM,2003:81-95.
  • 4NICULESCU D,NATH B.DV based positioning in ad hoc networks[J].Journal of 267-280.
  • 5MA D,ER M J,WANG B.Analysis of bop-count-based source- to-destination distance estimation in wirelesssensor networks with applications in localization[J].IEEE Transactions on Vehicular Technology,2010,59(6):2 998-3 011.
  • 6HAN Guorui,ZHANG Wenmei,ZHANG Y p.An Experiment study of the propagation of radio waves in a scaled model of Long-Wall coal mining tunnels[J].IEEE Antennas and Wh'eless Propagation I.~tte~rs,2009,(8):502-504.
  • 7KAVITHA K,TEJA C R,GURURAJ R.Workload-aware tree construction algorithm for wireless sensor networks[J]jnternational Journal on Applications of Graph Theory in Wh'eless Ad Hoc Networks and Sensor Networks,2012,4(1 ): 1 - 14.
  • 8TIAN Shuang,ZHANG Xinming,WANG Xinguo,et al.A selective anchor node loceJization algorithm for wireless sensor networks[C]//Proc.of Intematinnal Conference on convergence Information Teclmology(ICCIT'07),[S.l.]:[s.n.],2007:358-362.
  • 9Koen LANGENDOEN,Niels wireless sensor networks:A Networks,2003(43):499-518.
  • 10刘晶晶,吴传生.一种带交叉算子的改进的粒子群优化算法[J].青岛科技大学学报(自然科学版),2008,29(1):77-79. 被引量:16

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部