摘要
为寻求同时具有良好的收敛性和数值表现的共轭梯度法,在Wolfe线搜索下,构造一种修正的DY共轭梯度法.该算法产生的搜索方向为充分下降方向,这一性质与所采用的线搜索方法无关.在Wolfe线搜索的条件下证明该算法具全局收敛性.研究结果表明:算法是有效的,尤其对大规模无约束优化问题.
In order to find a good convergence and numerical expression of conjugate gradient method at the same time, a modified DY conjugate gradient method (NMDY) is proposed under general Wolfe line search. This method can generate sufficient descent direction for the objective function, at the same time this property is independent of the line search method used. Global convergence of new methods under Wolfe line search is proved. Numerical experiment results show that the algorithm is effective, especially for a large-scale unconstrained optimization problem.
出处
《辽宁工程技术大学学报(自然科学版)》
CAS
北大核心
2014年第10期1415-1418,共4页
Journal of Liaoning Technical University (Natural Science)
基金
湖北省教育科学"十二五"规划基金资助项目(2012B310)
长江大学工程技术学院基金资助项目(13J0802)
关键词
无约束优化问题
共轭梯度法
充分下降
WOLFE线搜索
全局收敛性
unconstrained optimization
conjugate gradient method
sufficient descent direction
Wolfe line search
global convergent