期刊文献+

拟南芥下胚轴伸长与向光性的分子调控机理 被引量:14

Molecular Regulatory Mechanisms of Hypocotyl Elongation and Phototropism in Arabidopsis
原文传递
导出
摘要 下胚轴快速伸长和向光性是高等植物进行固着生活的重要适应性机制,是子叶钻出土层进行光形态发生和光合作用的必要前提。拟南芥下胚轴因其简单的生理形态结构和特异的生理功能而成为剖析植物细胞伸长和向性生长的理想模式系统。本文主要介绍光和植物激素调控拟南芥下胚轴伸长和向光性弯曲的生理基础、遗传学功能及其分子调控机理的最新进展。 Rapid elongation and phototropism of the hypocotyl, which are essential for the young seedling to perceive light and undergo photomorphogenesis and photosynthesis, are important adaptive mechanisms for plant sessile life. The Arabidopsis hypocotyl is an ideal model system to dissect cell elongation and tropic growth in plants due to its simple physiological and morphological structure and specific physiological roles. This review focused on physiological basis and genetic functions of light- and phytohormone-regulated hypo- cotyl elongation and phototropism, and recent progresses on their regulatory molecular mechanisms in Arabidopsis thaliana.
出处 《植物生理学报》 CAS CSCD 北大核心 2014年第10期1435-1444,共10页 Plant Physiology Journal
基金 国家自然科学基金(31370313 91317304和31171520) 浙江省科技厅公益性项目(2013C32010)
关键词 拟南芥 下胚轴 细胞伸长 向光性 PIFs 激素 Arabidopsis thaliana hypocotyl cell elongation phototropism PIFs hormones
  • 相关文献

参考文献5

二级参考文献278

  • 1AI-Sady, B., Kikis, E.A., Monte, E., and Quail, P.H. (2008). Mechanis- tic duality of transcription factor function in phytochrome sig- naling. Proc. Natl Acad. Sci. U S A. 105, 2232-2237.
  • 2Al-Sady, B., Ni, W., Kircher, S., Schafer, E., and Quail, P.H. (2006). Photoactivated phytochrome induces rapid PIF3 phosphoryla- tion prior to proteasorne-rnediated degradation. Mol. Cell. 23, 439-446.
  • 3Bae, G., and Choi, G. (2008). Decoding of light signals by plant phy- tochromes and their interacting proteins. Annu. Rev. Plant Biol. 59, 281-311.
  • 4Ballare, C.L. (2009). Illuminated behaviour: phytochrome as a key regulator of light foraging and plant anti-herbivore defence. Plant Cell Environ. 32, 713-725.
  • 5Ballare, C.L (2011). Jasmonate-induced defenses: a tale of intelli- gence, collaborators and rascals~ Trends Plant Sci. 16, 249-257.
  • 6Bauer, D., et al. (2004). Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light sig- naling in Arabidopsis. Plant Cell. 16, 1433-1445.
  • 7Castillon, A., Shen, H., and Huq, E. (2007). Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci. 12, 514-521.
  • 8Child, R., and Smith, H. (1987). Phytochrome action in light-grown mustard: kinetics, fluence-rate compensation and ecological sig- nificance. Planta. 172, 219-229.
  • 9Cole, B., Kay, S.A., and Chory, J. (2011). Automated analysis of hypocotyl growth dynamics during shade avoidance in Arabi- dopsis. Plant J. 65, 991-1000.
  • 10de Lucas, M., et al. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature. 451,480-484.

共引文献57

同被引文献140

引证文献14

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部