摘要
A new method to predict the ultimate strength of fiber reinforced composites under arbitrary load condition is introduced. The micromechanics strength theory is used to perform the final failure prediction of composite laminates. The theory is based on unit cell analytic model which can provide the ply composite material properties by only using the constituent fiber and matrix properties and the laminate geometric parameters without knowing any experimental information of the laminates. To show that this method is suitable for predicting the strength of composite laminates, the micromechanics strength theory is ranked by comparing it with all the micro-level and the best two macro-level theories chosen from the World Wide Failure Exercise. The results show that this method can be used for predicting strength of any composite laminates and provide a direct reference for composite optimum design.
A new method to predict the ultimate strength of fiber reinforced composites under arbitrary load condition is introduced. The micromechanics strength theory is used to perform the final failure prediction of composite laminates. The theory is based on unit cell analytic model which can provide the ply composite material properties by only using the constituent fiber and matrix properties and the laminate geometric parameters without knowing any experimental information of the laminates. To show that this method is suitable for predicting the strength of composite laminates, the micromechanics strength theory is ranked by comparing it with all the micro-level and the best two macro-level theories chosen from the World Wide Failure Exercise. The results show that this method can be used for predicting strength of any composite laminates and provide a direct reference for composite optimum design.
基金
Funded in part by China Postdoctoral Science Foundation(No.2013M541574)
Hi-tech Research and Development Program of China(No.2012AA040209)