期刊文献+

鸡卵清提取液中大于3ku蛋白促细胞升高表达多能基因Oct-3/4和Nanog 被引量:1

More than 3 ku proteins in chicken egg extract up-regulate expression of pluripotent genes Oct-3/4 and Nanog
下载PDF
导出
摘要 背景:将体细胞重编程为多能干细胞在生物医学研究领域有广泛的应用价值。目的:分析鸡卵清提取液中不同分子质量的蛋白促进293T细胞升高表达多能基因Oct-3/4和Nanog的作用。方法:分离鸡卵清提取液中大于3 ku和小于3 ku的成分,用于293T细胞共培养。实验分为4组:每孔加入1×105个293T细胞,总体积500μL。对照组加入500μL培养基;另外3个孔分别加500μL鸡卵清提取液、鸡卵清大于3 ku的成分和小于3 ku的成分。采用定量PCR检测多能基因Nanog和Oct-3/4的相对表达量。结果与结论:用共培养法大于3 ku的成分有促细胞升高表达多能基因Oct-3/4和Nanog的作用,但小于3 ku的成分没有促细胞升高表达多能基因的作用。提示在鸡卵清提取液中促细胞升高表达多能基因的成分是大于3 ku的蛋白质。 BACKGROUND:Reprogramming somatic cells to generate pluripotent stem cells has a wide application in biomedical research. OBJECTIVE:To analyze the effect of different molecular weight proteins in chicken egg-white extract to elevate expression of pluripotent genes Oct-3/4 and Nanog in 293T cells. METHODS:The extracts of chicken egg-white were separated into more than 3 ku and less than 3 ku ingredients to be used for co-culture with 293T cells. There were four groups, 1×10^5 293T cells per wel , total 500μL. In the control group, 500μL culture medium was added;in the other three groups, 500μL chicken egg-white extract, more than 3 ku and less than 3 ku ingredients were respectively added. Quantitative PCR was used to determine the relative expression levels of pluripotent genes Nanog and Oct-3/4 in 293T cells. RESULTS AND CONCLUSION:By using co-culture method, more than 3 ku ingredients have a role to increase the expression of pluripotent genes Oct-3/4 and Nanog, but less than 3 ku ingredients cannot elevate the expression of pluripotent genes. This indicates that the ingredient of chicken egg-white extract to elevate the expression of pluripotent genes is more than 3 ku proteins.
出处 《中国组织工程研究》 CAS CSCD 2014年第37期6029-6033,共5页 Chinese Journal of Tissue Engineering Research
基金 国家自然科学基金(31172170) 国家重点基础研究发展计划(973计划)(2012CB518106) 云南省高新技术产业发展专项(201204)资助的课题~~
  • 相关文献

参考文献32

  • 1Takahashi K, Yamanaka S.Yamanaka Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell.2006; 126(4): 663-676.
  • 2Wernig M, Meissner A, Foreman R,et al.ln vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature.2007; 448(7151 ): 318-324.
  • 3Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007; 318(5858): 1917-1920.
  • 4Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pludpotency with defined factors. Nature. 2008; 451 (7175): 141-146.
  • 5Dimos JT, Rodolfa KT, Niakan KK, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008; 321 (5893): 1218-1221.
  • 6Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131(5): 861-872.
  • 7Okita K, Ichisaka T, Yamanaka S.Yamanaka Generation of germline-competent induced pluripotent stem cells. Nature. 2007; 448(7151): 313-317.
  • 8Aoi T, Yae K, Nakagawa M, et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 2008; 321 (5889): 699-702.
  • 9Kim JB, Zaehres H, Wu G, et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature. 2008; 454(7204): 646-650.
  • 10Suzuki K, Mitsui K, Aizawa E, et al. Highly emcient transient gene expression and gene targeting in primate embryonic stem cells with helper-dependent adenoviral vectors. Proc NaU Acad Sci U S A. 2008; 105(37): 13781-13786.

二级参考文献18

  • 1Miyamoto K, Tsukiyama T, Yang Y, Li N, Minami N, Yamada M, et al. Cell-free extracts from mammalian oocytes partially induce nuclear reprogramming in somatic cells. Biol Reprod 2009; 80(5): 935-43.
  • 2Alberio R, Johnson AD, Stick R, Campbell KH. Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm. Exp Cell Res 2005; 307(1): 131-41.
  • 3Huang X, Cho S, Spangrude GJ. Hematopoietic stem cells: Generation and self-renewal. Cell Death Differ 2007; 14(11): 1851-9.
  • 4Balic A, Mina M. Identification of secretory odontoblasts using DMPI-GFP transgenic mice. Bone 2010; 48(4): 927-37.
  • 5Smeti I, Savary E, Capelle Y, Hugnot JP, Uziel A, Zine A. Expression of candidate markers for stem/progenitor cells in the inner ears of developing and adult GFAP and nestin promoter?GFP transgenic mice. Gene Expr Patterns 2010; 11(1/2): 22-32.
  • 6Takaishi S, Shibata W, Tomita H, Jin G, Yang X, Ericksen R, et al. In vivo analysis of mouse gastrin gene regulation in enhanced GFP-BAC transgenic mice. Am J Physiol Gastrointest Liver Physiol201O; 300(2): G334-44.
  • 7Wilkosz S, Pullen N, de-Giorgio-Miller A, Ireland G, Herrick S. Cellular exchange in an endometriosis-adhesion model using GFP transgenic mice. Gynecol Obstet Invest 2011; 72(2): 90-7.
  • 8Danilchick M, Peng HB, Kay BK. Xenopus laevis: Practical uses in cell and molecular biology. Pictorial collage of embryonic stages. Methods Cell Biol 1991; 36: 679-81.
  • 9Lohka MJ, Masui Y. Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic compo?nents. Science 1983; 220(4598): 719-21.
  • 10Leno GH. Cell-free systems to study chromatin remodeling. Methods Cell Biol 1998; 53: 497-515.

共引文献3

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部