期刊文献+

脑电图谱熵对昏迷患者预后判别的价值 被引量:3

Prognostic value of the EEG spectral entropy in comatose patients
下载PDF
导出
摘要 目的:评估脑电图(EEG)谱熵对脑卒中昏迷患者存活的预测价值。方法:回顾性分析脑卒中昏迷并完善定量EEG监测患者,根据出院结局分为死亡组及存活组。采用Logistic回归对影响昏迷患者存活的因素进行单因素和多因素分析。应用ROC曲线下面积对影响因素进行比较。结果:共74例患者入组,存活45例(60.8%)。α谱熵和GCS评分是脑卒中昏迷患者存活的独立影响因素。α谱熵对存活预测的ROC曲线下面积为0.823±0.048(P〈0.01,95%CI:0.729~0.916)。GCS评分对存活预测的ROC曲线下面积为0.734±0.059(P〈0.01,95%CI:0.618~0.851)。结论:α谱熵对脑卒中昏迷患者存活判定具有重要价值。 Objective: To evaluate the prognostic value of the electroencephalogram (EEG) spectrum entropy in comatose patients. Methods: The general information and data of continuous EEG of patients in coma were reviewed and further work was performed to make them flawless. According to the outcomes at discharge, the patients were divided into dead group and survival group. The factors which would influence the outcomes of comatose patients were analyzed by univariate and multivariate Logistic regression. Receiver operating characteristic curves were used to compare the influencing factors. Results: A total of 74 patients in coma were enrolled,45 of which were survived at discharge (60.8%). GCS and alpha spectrum entropy were found to be independent survival factors of comatose patients. The area under the receiver operator characteristic curve for predicting survival of alpha spectrum entropy was 0. 823±0. 048 (P〈0.01,95% CI.0. 716-0. 902),and that of GCS score was 0. 734±0. 059(P〈0.01,95% CI:0. 619- 0. 830). Conclusion. The alpha spectrum entropy is valuable in the survival predicting of comatose patients.
出处 《西北国防医学杂志》 CAS 2014年第5期436-439,共4页 Medical Journal of National Defending Forces in Northwest China
基金 陕西省科技攻关计划资助项目(2013KTZB03-02-0)
关键词 脑电图 昏迷 谱熵 预后 Electroencephalogram Comal Spectrum entropy~ Prognosis
  • 相关文献

参考文献11

  • 1王琳,宿英英,李宁,李淑娟.脑电图反应性对急性重症脑血管病的预测意义[J].中华老年心脑血管病杂志,2002,4(4):253-255. 被引量:11
  • 2Chan HL, Lin MA,Fang SC. Linear and nonlinear analysis of electroencephalogram of the coma[J]. Conf Proc IEEE Eng Med Biol Soc,2004, 1:593--595.
  • 3柯莎,吴东宇,王晓明.脑电非线性分析在意识障碍中的应用[J].中国康复医学杂志,2010,25(3):277-281. 被引量:1
  • 4Chen B,Song FQ, Sun LL,et al. Improved early post re- suscitation EEG activity for animals treated with hypo- thermia predicted 96 hr neurological outcome and survival in a rat model of cardiac arrest[J]. Biomed Res Int,2013, 2013:312--137.
  • 5Lehembre R, Marie-- Aurelie B, Vanhaudenhuyse A, et al. Resting--state EEG study of comatose patients: a con- nectivity and frequency analysis to find differences be- tween vegetative and minimally conscious states[J]. Funet Neurol,2012,27(1) :41-47.
  • 6Blaneo S,Garay A,Coulombie D. Comparison of frequency bands using spectral entropy for epileptic seizure predic- tion[J]. ISRN Neurol, 2013, 2013 : 287327.
  • 7Ohisa N, Ogawa H, Murayama N, et al. A novel EEG in- dex for evaluating the sleep quality in patients with ob- structive sleep apnea--hypopnea syndrome[J]. Tohoku J Exp Med,2011,223(4) :285--289.
  • 8刘金升,岳云.脑电熵在麻醉深度监测中的应用现状[J].国际麻醉学与复苏杂志,2009,30(2):152-155. 被引量:2
  • 9Hamel MB, Goldman L,Teno J,et al. Identification of co- matose patients at high risk for death or severe disability [J]. JAMA, 1995,273(23) : 1842-- 1848.
  • 10黄富,肖华.脑损伤昏迷患者预后评估的研究进展[J].临床神经外科杂志,2012,9(4):247-249. 被引量:11

二级参考文献71

  • 1吴东宇,贾宝森,尹岭.脑电非线性分析在麻醉深度监测中的应用[J].解放军医学杂志,2005,30(1):40-42. 被引量:17
  • 2吴东宇,蔡刿,尹岭,贾宝森.近似熵和复杂度分析在麻醉深度监测中的应用[J].解放军医学杂志,2005,30(12):1098-1099. 被引量:5
  • 3Viertio-Oja H, Maja V, Sarkela M, et al. Description of the entropy algorithm as applied in the datex-ohmeda S/5 entropy module. Acta Anaesthesiol Scand, 2004, 48(2) : 154-161.
  • 4Bruhn J, Ropcke H, Hoeft A. Approximate entropy as an electroen-cephalographic measure of anesthetic drug effect during desflurane anesthesia. Anesthesiology, 2000, 92(3): 715-726.
  • 5Vanluchene ALG, Vereecke H, Thas O, et al. Spectral entropy as an eleetroeneephalographic measure of anesthetic drug effect. A compari - son with bispectral index and processed mid-latency auditory evoked response. Anesthesiology, 2004, 101 ( 1 ) : 34-42.
  • 6Vanluchene ALG, Struys MMRF, Heyse BEK, et al. Spectral entropy measurement of patient responsiveness during propofol and remifen - tanil. A comparison with the bispectral index. Br J Anaesth, 2004, 93 (5): 645-654.
  • 7Bruhn J, Lehmann LE, Ropcke H, et al. Shannon entropy applied to the measurement of the electroencephalographic effects of desflurane. Anesthesiology, 2001, 95( 1 ): 30-35.
  • 8Vakkuri A, Yli-Hankala A, Talja P, et al. Time-frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia. Acta Anaesthesiol Seand, 2004, 48(2) : 145-153.
  • 9Ellerkmann RK, Wenningmann, Kreuer S, et al. Spectral entropy and bispectral index as measures of the electroencephalographic effects of sevoflurane. Anesthesiology, 2004, 101 (6) : 1275-1282.
  • 10Mckay Ian DH, Voss LJ, Sleigh JW, et al. Pharmacokinetic-pharmacodynamic modeling the hypnotic effect of sevoflurane using the spectral entropy of the electroencephalogram. Anesth Analg, 2006, 102( 1 ) : 91-97.

共引文献21

同被引文献32

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部