期刊文献+

部分线性模型的统一估计的强相合性 被引量:2

Strong consistent of unified estimation for semiparametric partially linear regression models
下载PDF
导出
摘要 在纵向数据研究中,要求对个体的观测为稀疏的,在函数型数据研究中,要求对个体的观测为稠密的,为了抛弃这些限制性的条件,考虑部分线性模型,对函数型数据和纵向数据的半参数部分线性模型提出了一种统一的估计方法,并证明了估计的强相合性,在提出的估计中,个体的观测数目是完全灵活的,克服了以前方法的缺点. In the context of longitudinal data analysis, a random function typically represents a subject that is often observed at sparse time point. In the context of functional data analysis, a random function typically represents a subject that is often observed at dense time point. In dealing with real data, it may even be difficult to classify which scenario we are faced with and hence to decide which methodology to use. In this paper, we proposed a unified estimation for the semiparametric partially linear regression model, and studied the strong consistent of the proposed estimators.
出处 《广西科技大学学报》 CAS 2014年第4期23-29,共7页 Journal of Guangxi University of Science and Technology
基金 广西科技大学博十基金(校科博14Z07)资助
关键词 纵向数据 函数型数据 部分线性模型 强相合性 longitudinal data functional data semiparametric partially linear regression models strong consistent
  • 相关文献

参考文献3

二级参考文献15

  • 1Vosselman, G.. Slope based filtering of Laser altimetry data. International Archives of Photogrammetry [J]. Remote Sensing and Spatial Information Sciences33 (Part B3-2), 2000, 935-942.
  • 2Okagawa, M.. Algorithm of multiple filters to extract DSM from LIDAR data [J/OL].In: ESRI International User Conference, San Diego, CA,2001, 9-13 July. http://gis.esri.conv/ library/user conf/proc01/professional/papers/pap986/p986.htm (2001-09-13/ 2OO8-07-20).
  • 3Passini, R., Jacobsen, K., 2002. Filtering of digital elevation models [J/OL]. In: Proceedings of the ASPRS Annual Convention, Washington DC (on CDROM). http://www.ipi.uni-hannover.de/uploads/t x_tkpublikationen/jac_Filtasp.pdf ( 2002-08-23/2008-07- 20).
  • 4Elmqvist, M.. Ground surface estimation from airborne laser scanner data using active shape models [J]. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences 34 (Part 3A), 2002, 114-118.
  • 5Zhang, K., Whitman, D.. Comparison of three algorithms for faltering airborne LIDAR data [J]. Photogrammetric Engineering & Remote Sensing,2005,71 (3) :313-324.
  • 6Shan, J., Sampath, A.. Urban DEM generation from raw LIDAR data: A labeling algorithm and its performance [J ]. Photogrammetric Engineering &Remote Sensing, 2005,71 (2) :217-226.
  • 7罗英哲.从光达点云资料重建面特征[D]台湾:国立成功大学,2008.
  • 8Sorin C.Popescu,Zhao Kaiguang. A voxel-based lidar method for estimating crown base height for deciduous and pine trees[J].Remote Sensing of Environment,2008.767-781.
  • 9Priestnall G,Jaafar J,Duncan A. Extracting Urban Features from LiDAR Digital Surface Models[J].Computers, Environment and Urban Systems,2000.65-78.
  • 10John Secord,Avideh Zakhor. Tree Detection in LiDAR Data[J].Image Analysis and Interpretation,2006.86-90.

共引文献5

同被引文献4

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部