期刊文献+

基于模拟有限差分法的离散裂缝模型两相流动模拟 被引量:17

Two-phase flow simulation of discrete fracture model using a novel mimetic finite difference method
下载PDF
导出
摘要 模拟有限差分作为一种新型数值计算方法,因其良好的局部守恒性和对复杂网格系统的适用性,在计算流体力学和油藏数值模拟中得到应用。将模拟有限差分方法进一步应用于离散裂缝流动模拟中,对模拟有限差分法的基本原理进行详细阐述,建立相应的离散裂缝数值计算格式,并采用IMPES方法对其两相流问题进行求解,并与实验结果对比。对比结果验证了新方法和程序的正确性,通过复杂离散裂缝算例进一步验证了方法的正确性和程序的鲁棒性。 The mimetic finite difference (MFD) method, as a novel numerical method, has been successfully applied to CFD and reservoir simulation due to its local conservativeness and applicability of complex grids. It was applied to the numer-ical simulation of discrete fracture model. The principle of the MFD method was described in details, and the corresponding numerical formula of the discrete fracture model was developed. An IMPES scheme was used for the solution of a two-phase flow simulation, and several case studies were conducted to show the efficiency and robustness of the proposed numerical model.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第6期97-105,共9页 Journal of China University of Petroleum(Edition of Natural Science)
基金 国家重点基础研究发展计划(2011CB201004) 国家自然科学基金项目(51234007 11102237) 国家重大科技专项(2011ZX05014-005-003HZ) 中央高校基本科研业务费专项(13CX05007A 14CX02042A 13CX05017A)
关键词 裂缝性介质 模拟有限差分 离散裂缝模型 数值模拟 两相渗流 fractured porous media mimetic finite difference method discrete fracture model numerical simulation two-phase flow in porous media
  • 相关文献

参考文献24

  • 1National Research Council. Rock fractures and fluidflow: contemporary understanding and applications[M]. Washington, DC: National Academies Press,1996:1-10.
  • 2BARENBLATT G, ZHELTOV I P, KOCHINA I. Basicconcepts in the theory of seepage of homogeneous liquidsin fissured rocks[J]. Journal of Applied Mathematicsand Mechanics, 1960,24(5):1286-1303.
  • 3WARREN J, ROOT P J. The behavior of naturally frac-tured reservoirs[J]. Old SPE Journal, 1963,3(3):245-255.
  • 4KAZEMI H, LS M, PORTERFIELD K, et al. Numericalsimulation of water-oil flow in naturally fractured reser-voirs[J]. Old SPE Journal, 1976,16(6):317-326.
  • 5PRUESS K. A practical method for modeling fluid andheat flow in fractured porous media[J]. Old SPE Jour-nal, 1985,25(1):14-26.
  • 6WU Y-S, PRUESS K. A multiple-porosity method forsimulation of naturally fractured petroleum reservoirs[J]. SPE Reservoir Engineering, 1988,3(1):327-336.
  • 7KARIMI-FARD M, GONG B, DURLOFSKY L. Genera-tion of coarse-scale continuum flow models from detailedfracture characterizations [J]. Water Resources Re-search, 2006,42(10):W10423.
  • 8BOURBIAUX B. Fractured reservoir simulation: a chal-lenging and rewarding issue[J]. Oil & Gas Science andTechnology, 2010,65(2):227-238.
  • 9王月英,姚军,黄朝琴.裂隙岩体流动模型综述[J].大庆石油学院学报,2011,35(5):42-48. 被引量:11
  • 10HUANG Z-Q, YAO J, WANG Y-Y. An efficient nu-merical model for immiscible two-phase flow in fracturedKarst reservoirs[J]. Communication in ComputationalPhysics, 2013,13(2):540-558.

二级参考文献68

共引文献53

同被引文献228

引证文献17

二级引证文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部