期刊文献+

基于ABM与FBM结合的精确快速相机自标定方法

Quick and accurate camera self-calibration method based on combination of FBM and ABM
下载PDF
导出
摘要 针对BA在场景重构时精度达不到摄影测量规范要求这一问题,提出一种SFM流程,旨在最大化增量重建的精度。采用分层匹配方法,在图像金字塔顶层进行基于特征点的匹配(FBM),采用带有改进的NCC和LSM的基于区域匹配(ABM)方法逐层对匹配点位置进行调整,得到高精确度的匹配位置;将修正后的匹配点用于基础矩阵F和单应矩阵H的估计,计算tracks信息,生成图像连通图G,用于决定图像添加到BA中的顺序,从而得到高精度的相机位姿和3D点。实验结果表明,该流程能够提高重建结果的精度并实现可扩展性。 Aiming at the problem that the accuracy fails to satisfy the requirements of photogrammetry specifications when recon- structing the scene by BA (bundler adjustment), a new process of SFM (structure from motion) was proposed aiming to maxi- mize the accuracy of the incremental reconstruction. A hierarchical matching method was used and the feature based matching (FBM) was run at the top level, then the position of matching points were adjusted layer-by-layer using area based matching (ABM) with improved normalized cross correlation (NCC) and least squares image matching (LSM) to obtain the high accuracy matching position. Corrected points were used to estimate the fundamental matrix and homography matrix, and tracks were computed and the image connectivity graph G was constructed. Tracks and G were used to determine the sequence of images added into BA to obtain high precision camera poses and 3D points. Results of experiments show that the proposed method can improve the precision of reconstruction and achieve sealability.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第11期3893-3897,共5页 Computer Engineering and Design
基金 南宁市科技开发基金项目(201002010A)
关键词 运动获取结构 绑定调整 三维重建 分层匹配 归一化互相关 最小二乘匹配 高精度 SFM BA reconstruction hierarchical matching NCC LSM precision
  • 相关文献

参考文献15

  • 1Richard Szeliski.计算机视觉--算法与应用[M].艾海舟,译.北京:清华大学出版社,2012:265-273.
  • 2Sameer Agarwal,Yasutaka Furukawa,Noah Snavely.Building Rome in a day[J].Communications of the ACM,2011,54(10):105-112.
  • 3张祖勋.由数字摄影测量的发展谈信息化测绘[J].武汉大学学报(信息科学版),2008,33(2):111-115. 被引量:56
  • 4Noah Snavely,Steven M Seitz,Richard Szeliski.Modeling the world from internet photo collections[J].International Journal of Computer Vision,2008,80(2):189-210.
  • 5Wu CC,Agarwal S,Curless B.Multicore bundle adjustment[C]//Conference On Computer Vision And Pattern Recognition,2011:3057-3064.
  • 6Steve Harwin,Arko Lucieer.Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle(UAV)imagery[J].Remote Sensing,2012,4(6):1573-1599.
  • 7Sirmacek B,Unsalan C.Urban-area and building detection using SIFT keypoints and graph theory[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(4):1156-1167.
  • 8杨化超,张书毕,张秋昭.基于SIFT的宽基线立体影像最小二乘匹配方法[J].测绘学报,2010,39(2):187-194. 被引量:35
  • 9Jose L Lerma,Santiago Navarro,Miriam Cabrelles,et al.Automatic orientation and 3D modelling from markerless rock art imagery[J].ISPRS Journal of Photogrammetry and Remote Sensing,2013,76:64-75.
  • 10孙卜郊,周东华.基于NCC的存在旋转的图像匹配方法[J].传感器与微系统,2008,27(5):43-45. 被引量:11

二级参考文献63

共引文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部