期刊文献+

模糊系统建模方法及其在微生物发酵中的应用

Novel hybrid ANFIS and its application in microbial fermentation engineering
下载PDF
导出
摘要 提出一种具有量子行为的模糊系统建模方法。避免事先指定聚类数目及中心,采用混合模糊聚类算法对模糊系统的输入空间进行划分,每个聚类通过高斯函数的拟合产生一个隶属度函数,完成ANFIS前件参数的初始识别;通过具有量子行为的粒子群算法与最小二乘法优化前件参数,得到ANFIS的前件及后件参数。将该方法应用于实际的抗坏血酸2-葡萄糖苷生产发酵模型的建立中,实验结果表明,该方法具有较高精度,符合实际生产需要。 A novel fuzzy system modeling algorithm, namely the hybrid quantum-behaved ANFIS was proposed. A hybrid fuzzy clustering algorithm was used to divide the input space, and every cluster generated a membership function by approximation tb recognize the premise parameters of ANFIS roughly. Then the quantum behaved particle swarm optimization algorithm was ap- plied with the least square method to optimize the rough premise parameters, and all the parameters of ANFIS were obtained. The hybrid quantum-behaved ANFIS was applied to real microbial fermentation experiments. The results indicate that the pro- posed method is much more precise than the traditional ANFIS.
作者 周頔 孙俊
出处 《计算机工程与设计》 CSCD 北大核心 2014年第11期3974-3979,共6页 Computer Engineering and Design
基金 江苏省自然科学基金项目(SBK201341929) 江南大学自主科研基金项目(1232050205120960)
关键词 自适应模糊推理系统 混合聚类 具有量子行为的粒子群算法 模糊系统 微生物发酵 生产预测 ANFIS hybrid clustering QPSO fuzzy system microbial fermentation production predict
  • 相关文献

参考文献12

  • 1Rajesh Singh,Ashutosh Kainthola,Singh TN.Estimation of elastic constant of rocks using an ANFIS approach[J].Applied Soft Computting,2012,12(1):40-45.
  • 2Ahmad Kalhor,Babak N Araabi,Caro Lucas.A new systematic design for habitually linear evolving TS fuzzy model[J].Expert Systems with Applications,2012,39(2):1725-1736.
  • 3Raad Z Homod,Khairul Salleh Mohamed Sahari,Haider AF Almurib,et al.RLF and TS fuzzy model identification of indoor thermal comfort based on PMV/PPD[J].Building and Environment,2012,49:141-153.
  • 4Mark Polczynski,Michael Polczynski.Using the k-Means clustering algorithm to classify features for choropleth maps[J].The International Journal for Geographic Information and Geovisualization,2014,49(1):69-75.
  • 5Krinidis S,Chatzis V.A robust fuzzy local information CMeans clustering algorithm[J].IEEE Transactions on Image Processing,2010,19(5):1328-1337.
  • 6Tamalika Chaira.A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images[J].Applied Soft Computing,2011,11(2):1711-1717.
  • 7Cao Hongbao,Deng Hong-Wen,Wang Yu-Ping.Segmentation of M-FISH images for improved classification of chromosomes with an adaptive fuzzy c-means clustering algorithm[J].IEEE Transactions on Fuzzy Systems,2012,20(1):1-8.
  • 8Sun Jun,Fang Wei,Wu Xiaojun,et al.Quantum-behaved particle swarm optimization:Analysis of individual particle behavior and parameter selection[J].Evolutionary Computation,2012,20(3):349-393.
  • 9Sun Jun,Fang Wei,Vasile Palade,et al.Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point[J].Applied Mathematics and Computation,2011,218(7):3763-3775.
  • 10Sun J,Xu W-B,Feng B.Adaptive parameter control for quantum-behave particle swarm optimization on individual level[C]//Proc of IEEE Int Conf on Systems,Man and Cybernetics.Hawaii:IEEE Press,2005:3049-3054.

二级参考文献10

  • 1周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 2Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proc of IEEE Int Conf on Neural Networks. Perth, 1995: 1942-1948.
  • 3Bergh F V D. An analysis of particle swarm optimizers[D]. Pretoria: Faculty of Natural and Agricultural Science, University of Pretoria, 2001.
  • 4Sun Jun, Xu Wenbo, Feng Bin. A global search strategy of quantum-behaved particle swarm optimization[C]. Proc of IEEE Conf on Cybernetics and Intelligent Systems. Singapore: IEEE Press, 2004:111-116.
  • 5Larrahaga P, Lozano J A. Estimation of distribution algorithms: A new tool for evolutionary computation[M].Boston: Kluwer Academic Publishers, 2002.
  • 6Pelikan M, Goldberg D E, Lobo E A survey of optimization by building and using probabilistic models[J]. Computational Optimization and Applications, 2002, 21(1): 5-20.
  • 7Clerc M, Kennedy J. The particle swarm: Explosion, stability and convergence in a multi dimentional complex space[J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.
  • 8Sun Jun, Xu Wenbo, Feng Bin. Adaptive parameter control for quantum-behave particle swarm optimization on individual level[C]. Proc of IEEE Int Conf on Systems, Man and Cybernetics. Hawii: IEEE Press, 2005: 3049- 3054.
  • 9Yao X, Liu Y, Lin G. Evolutionary programming made faster[J]. IEEE Trans on Evolutionary Computation, 1999, 3(2): 82-102.
  • 10Shi Y, Eberhart R C. A modified particle swarm[C]. Proc of IEEE Int Conf on Evolutionary Computation. Alaska: IEEE Press, 1998: 1945-1950.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部