期刊文献+

基于最优保留策略的改进遗传算法 被引量:11

Improved genetic algorithm based on elitist reserved strategy
下载PDF
导出
摘要 为有效解决遗传算法收敛速度慢和早熟收敛的问题,提出一种基于最优保留策略的改进方法。对遗传算法的选择算子和变异算子同时加以改进优化,将群体优胜劣汰的思想有效融入遗传算法框架,保障最优个体的基因能迅速向后代传播,加快收敛速度。提出最优个体优化变异的思想,避免算法落入局部最优。给出算法实施的具体步骤,在8个基准测试函数上进行仿真实验。数据比较和分析结果表明,该算法在收敛速度与全局收敛能力上都有较大的改善。 Aiming at increasing the convergence speed and avoiding the premature convergence, an improved genetic algorithm based on the elitist reserved strategy was presented. Both the selection operator and the mutation operator in genetic algorithm were optimized. The principles of the superiors surviving were integrated into the frame of the genetic algorithm, thus the fast transmission of the elitist genes into the later generation and the increase of the convergence speed were guaranteed. Meanwhile, the mutation of the elitist was put forward so as to achieve the global convergence of the algorithm. Some specific implementing steps of the algorithm were presented and simulation experiments on eight benchmarking functions were conducted as well. Re- sults show that this genetic algorithm is greatly enhanced in terms of the convergence speed and the global optimality after com- paring and analyzing the data generated from the experiments.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第11期3985-3990,共6页 Computer Engineering and Design
基金 人工智能四川省重点实验室基金项目(2010RY007) 四川省教育厅科研重点基金项目(13ZA0120) 自贡市重点科技计划基金项目(2012D01)
关键词 遗传算法 最优保留策略 优化选择 优化变异 算法改进 genetic algorithm elitist reserved strategy selection operator of optimization mutation operator of optimization algorithm improvement
  • 相关文献

参考文献13

  • 1YAN Taishan.An improved genetic algorithm and its blending application with neural network[C]//Second International Workshop on Intelligent Systems and Applications,2010:9-12.
  • 2Amarita Ritthipakdee,Arit Thammano,Nol Premasathian,et al.A new selection operator to improve the performance of genetic algorithm for optimization problems[C]//IEEE ICMA Conference International Scientific Advisory Board,2013:371-375.
  • 3陈有青,徐蔡星,钟文亮,张军.一种改进选择算子的遗传算法[J].计算机工程与应用,2008,44(2):44-49. 被引量:29
  • 4Zhang Qiyi,Chang Shuchun.An improved crossover operator of genetic algorithm[C]//Second International Symposium on Computational Intelligence and Design,2009:82-86.
  • 5SilvaFJM da,Sanchez PerezJM,Pulido JAG,et al.Optimizing multiple sequence alignment by improving mutation operators of a genetic algorithm[C]//Ninth International Conference on Intelligent Systems Design and Applications,2009:1257-1262.
  • 6张京钊,江涛.改进的自适应遗传算法[J].计算机工程与应用,2010,46(11):53-55. 被引量:56
  • 7杨超,王正勇,吴晓红.基于混沌遗传算法与小波多分辨率分析的岩心图像匹配[J].四川理工学院学报(自然科学版),2010,23(6):704-706. 被引量:1
  • 8XING Xiaoshuai,CHEN Yanfang,ZHOU Li,et al.A parallel immune genetic algorithm Based on simulated annealing[C]//International Conference on Multimedia Technology,2011:3366-3369.
  • 9何庆,曾黄麟,熊兴中.一种基于遗传算法的OFDMA系统的跨层资源分配[J].四川理工学院学报(自然科学版),2012,25(5):45-49. 被引量:4
  • 10张琛,詹志辉.遗传算法选择策略比较[J].计算机工程与设计,2009,30(23):5471-5474. 被引量:72

二级参考文献53

共引文献157

同被引文献76

引证文献11

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部