期刊文献+

基于邻居向量的近似子图匹配 被引量:1

Approximate subgraph matching based on neighborhood vector
下载PDF
导出
摘要 将近似子图匹配分成节点匹配和边匹配两个阶段。将数据图中所有节点的h-邻居节点表示成向量形式,采用一种启发式推理算法进行节点匹配得到节点对应关系,使用查询节点权重提高匹配相似度,使用节点过滤、索引技术和孤立候选节点提高运算效率;利用邻居向量索引得到匹配节点集合的扩展图,进行边匹配,得到匹配图。在真实数据上进行实验,实验结果表明,该算法效果较好,运算效率较高,可以应用于节点标签稀疏的情况和top-k近似匹配。 This approximate subgraph matching algorithm is composed of two stages: nodes matching and edges matching. First, the h-neighborhoods of each node in the data graph were represented with a neighborhood vector, and corresponding relations be- tween nodes were obtained by using a heuristic algorithm. Besides, weights of query nodes were used to improve the matching accuracy, and the nodes filtering, the index technique, and isolated candidates were used to improve the computing speed. Second, the index of neighborhood vector was applied to get the extended graph of matching nodes, and the matching subgraph was obtained after edges matching. The experiment results on real datasets show that the algorithm is effective and efficient in the context of data graph of sparse node label classes, and can be applied to top-k approximate matching.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第11期4027-4033,共7页 Computer Engineering and Design
基金 国家863高技术研究发展计划基金项目(2011AA7032030D) 全军军事研究生课题基金项目(2011JY002-158 2012-2014)
关键词 近似子图匹配 邻居向量 节点过滤 匹配代价 top-k近似匹配 approximate suhgraph matching neighborhood vector nodes filtering matching cost top-k approximate matching
  • 相关文献

参考文献12

  • 1Han Jiawei.Mining heterogeneous information networks by exploring the power of links[C]//Discovery Science.Berlin:Springer Berlin Heidelberg,2009:13-30.
  • 2Zou L,Mo J,Chen L,et al.gStore:Answering SPARQL queries via subgraph matching[J].Proceedings of the VLDB Endowment,2011,4(8):482-493.
  • 3Han L,Finin T,Joshi A.GoRelations:An intuitive query system for DBpedia[M].The Semantic Web.Berlin:Springer Berlin Heidelberg,2012:334-341.
  • 4Sambhoos K,Nagi R,Sudit M,et al.Enhancements to high level data fusion using graph matching and state space search[J].Information Fusion,2010,11(4):351-364.
  • 5Zaslavskiy M,Bach F,Vert JP.Global alignment of proteinprotein interaction networks by graph matching methods[J].Bioinformatics,2009,25(12):1259-1267.
  • 6Chau P.Catching bad guys with graph mining[J].XRDS:Crossroads,The ACM Magazine for Students,2011,17(3):16-18.
  • 7Tian Y,Patel JM.Tale:A tool for approximate large graph matching[C]//IEEE 24th International Conference on Data Engineering.IEEE,2008:963-972.
  • 8Zhu L,Keong Ng W,Cheng J.Structure and attribute index for approximate graph matching in large graphs[J].Information Systems,2011,36(6):958-972.
  • 9Khan A,Li N,Yan X,et al.Neighborhood based fast graph search in large networks[C]//Proceedings of the ACM SIGMOD International Conference on Management of Data.ACM,2011:901-912.
  • 10Khan A,Wu Y,Aggarwal CC,et al.NeMa:fast graph search with label similarity[C]//Proceedings of the 39th International Conference on Very Large Data Bases.VLDB Endowment,2013:181-192.

二级参考文献2

共引文献57

同被引文献16

引证文献1

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部