期刊文献+

K-means、潜在类别模型和混合Rasch模型的比较 被引量:2

The Comparision among K-means,Latent Class Model and Mixture Rasch Model
下载PDF
导出
摘要 基于模拟研究比较了K-means方法、潜在类别模型和混合Rasch模型在二分外显变量情境下的聚类效果。结果表明:(1)潜在类别数量、变量数量、样本量、样本平衡和变量间相关对K-means方法、潜在类别模型和混合Rasch模型的分类准确性均有影响且因素间的交互作用存在;(2)除了在2个潜在类别的样本不平衡条件下K-means方法表现较差外,在其他条件下与潜在类别模型和混合Rasch模型的表现相当;(3)混合Rasch模型的分类一致性在2个潜在类别的情境下要好于潜在类别模型,但是在4个潜在类别的情境下要差于潜在类别模型。 Based on Monte Carlo simulation study, this article provides a comparision among K - means, Latent Class Model and Mixture Rasch Model on condition that the observed variables are binary. The results show that( 1 ) the number of latent classes and variables, the sample size, the balance of proportion and the correlation among the variables have impact on the classification and the interaction among these factors exists ; (2) the classification of K - means is poor when the data generated from two latent classes and unblanced population, otherwise, the performance of K - means is similar with the model based approaches; (3) with two latent classes, the performace of Mixture Rasch Model is better than the Latent Class Model but when the latent classes is four,the later is better than the former.
出处 《心理学探新》 CSSCI 2014年第5期431-436,共6页 Psychological Exploration
关键词 K—means 潜在类别模型 混合Rasch模型 聚类分析 模拟研究 K - means Latent Class Model Mixture Rasch Model cluster analysis simulation study
  • 相关文献

参考文献14

  • 1教育部.(2010).国家中长期教育改革和发展规划纲要(2010-2020年)(pp.02-28).2010-07-01取自http://china.com.cn.
  • 2Blashfield,R.K.(1976).Mixture model tests of cluster analysis:Accuracy of four agglomerative hierarchical methods.Psychological Bulletin,83 (3),377-388.
  • 3Dimitriadou,E.,Dolnicar,S.,& Weingessel,A.(2002).An examination of indexes for determining the number of clusters in binary data sets.Psychometrika,67(1),137-159.
  • 4Hagenaars,J.A.,& McCutcheon,A.L.(2002).Applied latent class analysis.Cambridge:Cambridge University Press.
  • 5Hubert,L.,& Arabie,P.(1985).Comparing partitions.Journal of Classification,2 (1),193-218.
  • 6Li,F.,Cohen,A.S.,Kim,S.H.,& Cho,S.J.(2009).Model selection methods for Mixture Dichotomous IRT Models.Applied Psychological Measurement,33 (5),353-373.
  • 7Lubke,G.,& Tueller,S.(2010).Latent Class Detection and Class Assignment:A Comparison of the MAXEIG Taxometric Procedure and Factor Mixture Modeling Approaches.Structural Equation Modeling:A Multidisciplinary Journal,17 (4),605-628.
  • 8McLachlan,G.J.(2011).Commentary on Steinley and Brusco (2011):Recommendations and cautions.[Comment].Psychological Methods,16(1),80-81.
  • 9Muthén,L.K.,& Muthén,B.O.(1998-2010).Mplus user's guide.Sixth Edition.Los Angeles,CA:Muthén & Muthén.
  • 10Nylund,K.,Nishina,A.,Bellmore,A.,& Graham,S.(2007).Subtypes,severity,and structural stability of peer victimization:What does latent class analysis say.? Child Development,78(6),1706-1722.

同被引文献340

引证文献2

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部