期刊文献+

射流夹角对加热炉内温度分布的影响的数值模拟研究 被引量:1

Numerical simulation research on the influence of jet angle on temperature distribution inside the heating furnace
原文传递
导出
摘要 采用FLUNT软件,研究了射流夹角对高温蓄热式加热炉内温度场分布的影响。研究结果表明,当夹角由5°增加到50°时,炉内的最高温度和出口处的平均温度几乎呈线性降低,炉内平均温度成二次曲线变化,先增大后减小,并且炉膛内的高温区越靠近喷口处。最高温度出现在烧嘴喷口1 m左右处,大于1 m后温度变化不大,比较平缓。当烧嘴夹角为25°~35°,炉内和钢坯表面温度比较均匀。综合各方面的因素,钢坯放在射流夹角为25°~35°的加热炉内时,距离烧嘴喷口1 m处,可达到最好的加热效果。 The influence of jet angle on temperature field distribution in high temperature heat-stored heating furnace was studied by FLUNT software.The results show that when the jet angle increases from 5° to 50°,the highest temperature inside the furnace and the average temperature at furnace exit are decreased linearly,and the average temperature inside the furnace increases at first and then decreases along the quadratic curve,meanwhile the highest temperature inside the furnace occurs near the nozzle and the relative distance is about 1 m.However,when the relative distance is larger than 1 m,the temperature has little changes and remains mild.When the jet angle is within 25°-35°,the temperature distribution inside the furnace and steel billet surface are more uniform.Considering all factors,the best heating effect occurs at the position of 1 m from the burner nozzle when steel billet is put in the heating furnace within the jet angle of 25°-35°.
作者 赵博宁 罗贤
出处 《锻压技术》 CAS CSCD 北大核心 2014年第11期81-85,共5页 Forging & Stamping Technology
基金 国家自然科学基金资助项目(51201134)
关键词 射流夹角 高温蓄热式加热炉 温度场 数值模拟 jet angle high temperature heat-stored heating furnace temperature field numerical simulation
  • 相关文献

参考文献5

二级参考文献21

  • 1刘启香.国内外工业炉发展趋势[J].冶金能源,1994,13(2):14-16. 被引量:3
  • 2高仲龙,温治,董补全,徐曼华.工业炉计算机控制[J].中国机械工程,1994,5(1):51-53. 被引量:12
  • 3高仲龙,张欣欣,董补全,温治.工业炉窑节能技术[J].工业炉,1996,18(3):6-10. 被引量:14
  • 4OU JIANPING, XIAO ZEQIANG. Investigation and Application of HTAC in China [A]. Yokohama. HTACG5: Fifth International Symposium on High Temperature Air Combustion and Gasification [C], Tokyo: NFK of Japan, 2002: 28-30.
  • 5PIAN C C. Biomass Fueled MEET Gasifier [A]. XIAO ZEQIANG, KUNIO Y. Proceeding of High Temperature Air Combustion [C], Beijing: The Federation of Engineering Societies of China Association for Science and Technology, 1999:69-88.
  • 6GUPTA A K, HASEGAWA T. High Temperature Air Combustion: Flame Characteristics, Challenges and Opportunities[A]. XIAO Ze-qiang, Kunio Y. Proceeding of High Temperature Air Combustion [C], Beijing: The FederationofEngineering Societies of China Association
  • 7YOSHIKAWA A K. Gasification and Power Generation from Solid Fuels Using High Temperature Air [A]. XIAO ZEQIANG, KUNIO Y. Proceeding of High Temperature Air Combustion [C]. Beijing: The FederationofEngineeringSocieties of China Association for Science and
  • 8YOSHIKAWA K. R&D on Small-scale Gasification of Solid Fuel at the Demonstration Plant of MEET system, MEET Ⅱ[A]. Proceedings of the 4th International Symposium on High Temperature Air Combustion and Gasification [C]. Rome:ENEA of Italy, 2001.68-72.
  • 9GUPTA A K, HASEGAWA T. Effect of Air Preheating Temperature and Oxygen Concentration on Flame Structure and Emission [J]. JoumalofEnergy Resource Technology, 1999, 121(3): 209-213.
  • 10TANAKA R, KISHIMOTO K, HASEGAWA T. High Efficiency Heat Transfer Method with Use of High Temperature Preheated Air and Gas Re-circulation [J]. Science and Technology, 1994,1(4): 35-39.

共引文献30

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部