期刊文献+

凝固过程晶粒生长动力学及拓扑转变机制的相场研究

Phase-Field Study for the Growth Kinetic and Topology Transformation Mechanism of Grains during Solidification Process
原文传递
导出
摘要 基于连续相场动力学模型,研究了凝固过程形核、长大及粗化阶段的组织形貌演化,动力学转变,以及粗化过程拓扑转变,分析了形核与长大过程的关系。研究结果表明,形核长大过程中,晶粒体积分数逐渐增大至平衡值,总表面积先增大后减小,体积自由能是形核的驱动力,表面能是形核的阻力。形核伴随着长大,两者是相互重叠相互竞争的两个过程。晶粒生长过程中,边数大于六的晶粒持续长大,而边数少于六的晶粒不断缩小。小晶粒消失机制有:临近切换机制;三边﹑四边及五边晶粒直接消失机制;四边交叉点分离并最终导致小晶粒消失机制;晶界直接消失机制。模拟结果与实验结果符合较好。 Based on the continuum phase-field dynamic model, the microstructure evolution, dynamics change and topology transformation during the solidification process of nucleation, growth and coarsening were studied, and the relationship between nucleation and growth was analyzed. Results show that volume fraction gradually increases to the equilibrium value, while the total surface area of grains increases first and then decreases during the process of nucleation and growth. For nucleation, volume free energy is driving force and surface energy is resistance force. Nucleation process is accompanied by growth process; these two processes are overlapped and competed During the growth process, grains with more than six sides continue to grow, and that with less than six sides gradually reduces. The mechanisms of small grain disappearing are neighbor switching mechanism, direct annihilation mechanism of three, four and five sided grains, the intersection of four sides separated and resulting in the disappearance of small grain, and direct disappearance mechanism of grain boundary. The simulation results are in good accordance with experiment results.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2014年第10期2377-2382,共6页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51174168 51274167) "111"工程项目(B08040)
关键词 多晶材料 凝固过程 形核长大 拓扑转变 连续相场 polycrystalline materials solidification process nucleation growth topology transformation continuum phase-field
  • 相关文献

参考文献21

  • 1Hull F C. Mater Sci and Tech[J], 1988, 4(9): 778.
  • 2Zhang C, Suzuki A, Ishimaru T et al. Metall Mater Trans A[J], 2004, 35:1927.
  • 3Palmer M A, Fradkov V E, Glickman M E et al. Metall Mater Trans A[J], 1995, 26(5): 1061.
  • 4Lee K. Thesis for Doctorate[D]. Washington D C: University of Maryland, 2004:52.
  • 5Hunderi O, Ryum N. Scipta Mater[J], 2005, 53(6): 719.
  • 6MacPherson R D, Sroloviz D J. Nature[J], 2007, 446:1053.
  • 7Mullins W W. Appl Phys[J], 1956, 27:900.
  • 8Smith C S. Trans Am Sot Metals[J], 1953, 45:533.
  • 9Chen L Q, Yallg W. Phys RevB[J], 1994, 50:15752.
  • 10Simmons J P, Wen Y H, Shen C et al. Materials Science Engineering[J], 2003, 365:136.

二级参考文献9

  • 1Tang Hongkui, Wang Yongxin, Chen Zheng. Acta Metallurgica Sinica[J], 2010, 46(9): 1147.
  • 2Prakash U et al. Journal of Materials Science[J], 1992, 27:2001.
  • 3Clapp P C. Physical Review B[J], 1971, 4(2): 255.
  • 4Zapolsky H, Pareige C, Marteau Let al. Calphad[J], 2001, 25(1): 125.
  • 5Raghavan V. Journal of Phase Equilibria and Diffusion[J], 2005, 26(3): 273.
  • 6Khachaturyan A G. Theory of Structural Transformations in Solids[M]. New York: Wiley, 1983:129.
  • 7Poduri R, Chen L Q. Acta Mate[J], 1998, 46:1719.
  • 8Chen L Q. Scr Metall Mater[J], 1993, 29:683.
  • 9YuFangxin(余方新).Systemically Study of Au-Cu Alloy System (Au-Cu合金系的系统研究)[M].Changsha:Central South Uni.versity,2005.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部