期刊文献+

基于在线目标跟踪算法的研究

Tracking Algorithm based on Online Target
原文传递
导出
摘要 在线目标跟踪是一个具有挑战性的问题。当运动目标表面发生变化、背景光线剧烈变化、背景物体的遮挡以及运动造成的模糊时,需要建立一个有效的物体外在表示模型。为此,本文利用典型的主成分分析(PCA)与稀疏表示建立了有效的观测模型。将l1最小值引入到PCA重建中,将目标物体表示为主要特征和噪声之和的形式。除此之外,当发生遮挡和运动模糊时,为了减少跟踪漂移现象,该文提出了一种新的更新模型而不是简单的对观测模型直接更新。实验证明,该算法在目标物体发生遮挡以及背景光线发生剧烈变化时,对目标跟踪具有较强的鲁棒性。在评价指标重叠率和中心误差方面,算法跟踪精确度明显提高。 Online target tracking is a challenging problem. When the surface of moving target changes and the fuzzy caused by background object's shelter and movement appears,it is necessary to establish an effective external representation model of object. Thus,by taking advantage of the typical principal component analysis( PCA) and sparse representation,an effective observation model is established. And by introducing L1 minimum value into the reconstruction of PCA,the target object is expressed as the sum of the major characteristic and the noise. In addition,when the shade and motion blur,in order to reduce the tracking drifting phenomenon,a novel model is proposed instead of simply updating the observation model.Experiments show that when the target object is covered and the background light changes dramatically,the algorithm is of strong robustness in target tracking. In overlap rate of evaluation index and center error,the algorithm is significantly improred in tracking accuracy.
出处 《通信技术》 2014年第11期1285-1290,共6页 Communications Technology
基金 国家自然科学基金资助项目(No.61107030) 山东省高校科技计划项目(No.J12LN08)~~
关键词 运动目标 观测模型 l1最小值 主成分分析 稀疏表示 motion target observation model l1minimum principal component analysis sparse representation
  • 相关文献

参考文献14

  • 1LIM J, ROSS D, YANG M H, et al. Incremental Learn- ing for Robust Visual Tracking[J]. International Journal of Computer Vision, 2008 ( 77 ) : 125-141.
  • 2陈美龙,戴声奎.基于GLCM算法的图像纹理特征分析[J].通信技术,2012,45(2):108-111. 被引量:34
  • 3GANGNET M, HUE C, VERMAAK J, et al. Color- based Probabilistic Tracking [ C ]//EECV. Denmark : Springer, 2002,7 : 661 - 675.
  • 4HU Weiming, LI Xi, ZHANG Xiaoqin, et al. Incremental Tensor Subspace Learning and Its Applications to Foreground Segmentation and Tracking [ J ]. International Journal of Computer Vision,2011 (91) :303-327.
  • 5WANG Dong, LU Hu-chuan, CHEN Yen-wei. Incre- mental MPCA for Color Object Tracking[ C ]//20th International Conference on Pattern Recognition. Istanbul: IEEE,2010 : 1751-1754.
  • 6WANG Tiesheng, IRENE Y H G,SHI Pengfei. Object Track-ing Using Incremental 2- D-PCA Learning and ML Estimation [ C ]//IEEE International conference. Honolu-lu : IEEE ,2007:933-936.
  • 7LI Guorong, LIANG Dawei, HUANG Qingming, et al. Object Tracking Using Incremental 2-D-LDA Learning and Bayes Inference [C]//IEEE International Confer- ence. San Diego : IEEE, 2008 : 1568-1571.
  • 8ROSS D A, LIM J, LIN R S,et al. Inc, remental Learning for Robust Visual Tracking [J].International Journal of Computer Vision,2008 ( 77 ) : 125-141.
  • 9MEI Xue, LING Haibin. Robust Visual Tracking Usingel Minimization [ C ]//IEEE International Conference on Computer Vision. Maryland : IEEE,2009 : 1436-1443.
  • 10NEDEVSCHI S,PETER I R, DOBOS I A,et al. An Im- proved PCA Type Algorithm Applied in Face Recognition [ C ]//IEEE International Conference on Intelligent Computer Communication and Processing. Cluj-Napoca: IEEE. 2010:259-262.

二级参考文献7

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部