期刊文献+

基于贝叶斯网研究自动作曲中音高的表示和推理 被引量:2

Representing and Reasoning Pitches in Algorithmic Composition Based on Bayesian Networks
下载PDF
导出
摘要 自动作曲或称算法作曲是利用计算机进行自动或半自动的音乐创作过程。算法作曲的关键之一是生成音高。然而,不确定性是音乐本身固有的特征。贝叶斯网是不确定性知识的表示和推理的典型工具,已经成功应用到很多领域。在MIDI格式的基础上,利用贝叶斯网在算法作曲中生成音高,首先建立一个关于音高的贝叶斯网模型并基于此模型建立知识库。其次,基于贝叶斯网对音高进行推理,生成给定节拍处的每一个音的音高。实验表明,所提出的音高推理方法是可行的。 Algorithmic composition is the partial or total automatic process of music composition by a computer.One of the challenges in algorithmic composition is to create pitches.However,uncertainty is an intrinsic feature of music.Bayesian network(BN)is an effective and popular framework for representing and reasoning knowledge under uncertainty,and BNs have been successfully applied to a variety of problems.Based on MIDI format to create pitches in algorithmic composition,we firstly built a model about pitches with BNs and a knowledge base based on the model.Moreover,based on bayesian inference,the pitch of every note at each pat could be created.A preliminary experiment demonstrates empirically that this method for pitch inference is feasible.
出处 《计算机科学》 CSCD 北大核心 2014年第B11期21-24,28,共5页 Computer Science
关键词 算法作曲 计算机音乐 MIDI音乐系统 贝叶斯网 推理 Algorithmic composition Computer music MIDI musical system Bayesian network Inference
  • 相关文献

参考文献17

  • 1冯寅,周昌乐.算法作曲的研究进展[J].软件学报,2006,17(2):209-215. 被引量:34
  • 2Tromp M, Bod R, Honingh A. Learning Symbolic Music through Hidden Markov Model Induction[J]. 2012.
  • 3Fernindez J D, Vico F. AI methods in algorithmic composition: a comprehensive survey[J]. Journal of Artificial Intelligence Re- search,2013,48(1) :513 82.
  • 4Bell C. Algorithmic music composition using dynamic Markov chains and genetic algorithms[J]. Journal of Computing Sciences in Colleges,2011,27(2) :99-107.
  • 5Salas H A G,Gelbukh A,Calvo H. Music composition based on linguistic approach [M]//Advances in Artificial Intelligence. Springer, 2010 : 117-128.
  • 6Boutsinas C, Ha B. Automatic interactive music improvisation based on data mining[J]. International Journal on Artificial In- telligence Tools, 2012,21 (4) : 1-24.
  • 7Khan A H. Artificial intelligence approaches to music composi- tion[D]. Northern Kentucky University,2013.
  • 8Edwards M. Algorithmic composition:computational thinking in music[J]. Communications of the ACM,2011,54(7)=58-67.
  • 9Donnelly P, Sheppard J. Evolving four-part harmony using ge- netic algorithms[M]//Applications of Evolutionary Computa- tion. Springer, 2011 : 273-82.
  • 10Morone A, Man2011i J, Von Zuben F, et al. Evolutionary Compu- tation applied to Algorithmic Composition [J]. NICS Reports, 2013(3) :49-53.

二级参考文献59

  • 1冯寅,周昌乐.算法作曲的研究进展[J].软件学报,2006,17(2):209-215. 被引量:34
  • 2Capanna A.Iannis xenakis-Architect of light and sound.Nexus Network Journal,2001,3(2).http://www.nexusjournal.com/Capanna-en.html
  • 3Ames C,Domino M.Cybernetic composer:an overview.In:Balaban M,Ebcioglu K,Laske O,eds.Understanding Music with AI.Cambridge:AAAI Press,1992.186-205.
  • 4Walker E.Chaos melody theory.2001.http://www.ziaspace.com/elaine/chaos/ChaosMelodyTheory.pdf
  • 5Ebcioglu K.An expert system for harmonizing chorales in the style of J.S.Bach.In:Balaban M,Ebcioglu K,Laske O,eds.Understanding Music with AI.Cambridge:AAAIPress,1992.294-334.
  • 6Steedman M.The blues and abstract truth:Music and mental models.In:Garnham A,Oakhill J,eds.Mental Models in Cognitive Science.Erlbaum,1996.305-327.
  • 7Todd PM,Loy G.Music and Connectionism.Cambridge:MIT Press,1991.
  • 8Griffith N,Todd PM.Musical Networks.Cambridge:MIT Press,1997.
  • 9Mozer MC.Neural network composition by prediction:Exploring the benefits of psychophysical constraints and multiscale processing.Cognitive Science,1994,6:247-280.
  • 10Hochreiter S,Schmidhuber J.Long short-term memory.1996.http://citeseer.ist.psu.edu/hochreiter961ong.html

共引文献38

同被引文献6

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部