期刊文献+

基于曲面形变的三维人脸样本配准 被引量:1

3D Face Registration Based on Surface Deformation
下载PDF
导出
摘要 三维人脸样本是人脸识别、人脸动画等领域进行模型训练、算法设计及性能比较的重要数据平台。为了提高三维人脸样本的配准效果和配准速度,提出一种基于曲面变形的三维人脸样本配准方法。该方法通过对标准化样本实施一系列的变形操作来建立原始样本与标准样本之间的对应关系。然后基于该对应关系对原始样本进行配准处理,在处理过程中使用统计方法对样本上的毛刺点和空洞进行修补。实验结果表明,使用该方法可以快速、有效地对不同格式的原始样本进行配准。 3Dface database is an important data platform for model training,algorithm design.To improve the matching result and efficiency of 3Dface sample,we proposed a new registration method based on surface deformation.First a series of deform operation is performed on the template sample to get the correspondence between template sample and raw sample.The registration operation is performed on the raw sample.In the procedure of matching process,the statistical method is used to tackle the problem of noise point and hollow.The experiment results show that the proposed method has good performance on face registration.
作者 盖赟
出处 《计算机科学》 CSCD 北大核心 2014年第B11期116-118,127,共4页 Computer Science
基金 北京市博士基金(2014ZZ-56) 中国青年政治学院青年教师基金(182060326)资助
关键词 样本配准 最近点匹配 TPS 三维人脸 曲面变形 Sample registration Closet point match TPS 3Dface sample Surface deformation
  • 相关文献

参考文献7

  • 1Goh R, Liu L, Liu X, et al. The CMU face in action (FIA) data- base[C]//Proceedings of Analysis and Modeling of Faces and Gestures. Beijing.. Springer-Verlag, 2005 : 255-263.
  • 2Beumier C. 3D-RMA 3D database[OL], http://www, sic. rma. ac. be/ beumier/DB/3d rma. html 1,2008.
  • 3Moreno A B,Sanchez A. Gavab DB: A 3D Face Database[C]// Proceedings of the 2nd COST275 Workshop on Biometrics on the Internet. Vigo: Lecture Notes, 2004.
  • 4Hu Yu-xiao, Zhang Zhen-qiu, Xu Xun, et al. Building Large Scale 3D Face Database for Face Analysis[C]//Proceedings of Multimedia Content Analysis and Mining. Weihai= Lecture Notes, 2007 : 343-350.
  • 5Bookstein F L. Principal Warps: Thin-Plate Splines and the De- composition of Deformations [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1989,11 : 567-585.
  • 6胡永利,尹宝才,程世铨,谷春亮,刘文韬.创建中国人三维人脸库关键技术研究[J].计算机研究与发展,2005,42(4):622-628. 被引量:17
  • 7Bentley J L. Multidimensional binary search trees used for asso- ciative searching[J ]. Conmmnications of t he ACM, 1975,18 (9) : 509-517.

二级参考文献15

  • 1M. Turk, A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71~86.
  • 2H. Rowley, S. Baluja, T. Kanade. Neural network-based face detection. IEEE Trans. Pattern Analysis and Machine Intelligence, 1998, 20(1): 23~38.
  • 3N. Bellhumer, J. Hespanha, D. Kriegman. Eigenfaces vs.fisherfaces: Recognition using class specific linear projection.IEEE Trans. Pattern Analysis and Machine Intelligence, Special Issue on Face Recognition, 1997, 17(7): 711~720.
  • 4P.J. Phillips, H. Moon, P. J. Rauss, et al. The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence, 2000, 22(10): 1090~1104.
  • 5K. Messer, J. Matas, J. Kittler, et al. Xm2vtsdb: The extended m2vts database. In: Proc. the 2nd Int'l Conf. Audio and Video-based Biometric Person Authentication. Washington,D. C.: University of Maryland, 1999. 72~77.
  • 6M. Jun, Z. Hongming, W. Gao, et al. Face Tracker: A human face tracking and facial organ localizing system. In: Proc. the 8th Int'l Conf. Computer Vision. Vancouver, Canada: IEEE Computer Press, 2001. 743~743.
  • 7V. Blanz, T. Vetter. A morphable model for the synthesis of 3D faces. In: Proc. SIGGRAPH' 99. Los Angeles: ACM Press,1999. 187~ 194.
  • 8S. Romdhani, V. Blanz, T. Vetter. Face identification by fitting a 3D morphable model using linear shape and texture error functions. In: Proc. the 7th European Conf. Computer Vision.London: Springer-Verlag, 2002. 3~19.
  • 9B. Horn, B. G. Schunk. Determining optical flow. Artificial Intelligence, 1981, 17(1-3): 185~201.
  • 10B.G. Schunk. The image flow constraint equation. Computer Vision, Graphics and Image Processing, 1986, 35(1): 20~46.

共引文献16

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部