期刊文献+

基于背景噪声的图像盲篡改检测 被引量:5

Image Forgery Detection Using Characteristics of Background Noise
下载PDF
导出
摘要 数字图像在成像过程中会产生特定的背景噪声,如果两幅不同噪声的图像拼接在一起,篡改区域和其他区的噪声会有差异。提出一种基于偏度统计特性的背景噪声估计算法,其通过对图像分块计算每块的噪声标准差,从而检测出噪声异常部分以达到篡改检测的目的。算法利用DCT变换去除原图细节部分,利用偏度统计特性估计噪声,利用条件最小值法求出噪声的标准差。算法改进了迭代求条件最小值法,利用微分方法求取最小值,避免了初始值设定问题,提高了算法的准确率。实验结果表明,提出的噪声估计算法正确率高,且对拼接篡改图像篡改检测有明显效果。 There is a part of background noise in digital image which comes from imaging process.The noise characteristics between image forgery area and the other area are different if images with different noise levels are spliced together.This paper proposed a background noise estimation algorithm based on the statistical properties of skewness.We detected the forgery parts by dividing image into some sub-blocks and computing the noise variance of each ones.This algorithm removes the original image details with DCT transform,estimates noise with the statistical properties of skewness,and estimates the standard deviation of noise with condition of the minimum method.This algorithm improves iterative conditional minimum value method using differential method to calculate the minimum value.This algorithm avoids the problem of setting the initial value,and improves the accuracy of the algorithm.The experimental results show that the proposed noise estimation algorithm has high accuracy and effectiveness in detecting forgery part in spliced images.
出处 《计算机科学》 CSCD 北大核心 2014年第B11期136-138,149,共4页 Computer Science
基金 北京市属高等学校人才强教计划资助项目(PHR201107146)资助
关键词 图像取证 背景噪声 偏度 标准差 Image forensics Background noise Skewness The standard deviation
  • 相关文献

参考文献15

  • 1Gou H, Swaminathan A, Wu M. Intrinsic sensor noise features for forensic analysis on scanners and scanned images[J]. IEEE Transactions on Information Forensics and Security, 2009, 4 (3):476-491.
  • 2李哲,郑江滨.基于噪声分布规律的伪造图像盲检测算法[J].计算机应用研究,2009,26(3):1092-1094. 被引量:10
  • 3Donoho D L, Johnstone J M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994,81 (3) : 425-455.
  • 4Mahdian B, Saie S. Using noise inconsistencies for blind image forensics[J]. Image and Vision Computing, 2009,27 ( 10 ) : 1497- 1503.
  • 5Li T, Wang M, Li T. Estimating noise parameter based on the wavelet coefficients estimation of original image[C] // 2010 In- ternational Conference on Challenges in Environmental S, eience and Computer Engineering (CESCE). IEEE, 2010,1:126-129.
  • 6Lukdg J, Fridrieh J, Goljan M. Detecting digital image forgeries using sensor pattern noise[C]//International Society for Optics and Photonics Electronic Imaging 2006. 2006:60720Y-60720Y-11.
  • 7Popescu A C, Farid H. Statistical tools for digital forensics[C]// Information Hiding. Springer Berlin Heidelberg, 2005:128-147.
  • 8张晖,张荣,尹东.使用背景噪声盲估计的图像真伪鉴别[J].中国图象图形学报,2010,15(12):1738-1741. 被引量:7
  • 9卢燕飞,鞠娅莉,于跃.基于图像背景噪声特性的篡改检测[J].信号处理,2012,28(9):1299-1307. 被引量:11
  • 10Zoran D, Weiss Y. Scale invariance and noise in natural images [C] ff 2009 IEEE 12th International Conference on Computer Vision. IEEE, 2009 : 2209-2216.

二级参考文献26

  • 1Celik M U, Sharma G, Saber E, et al. Hierarchical watermarking for secure image authentication with localization [ J]. IEEE Transactions on Image Processing, 2002, 11 (6) : 585 -595.
  • 2Popescu A C, Farid H. Exposing digital forgeries by detecting traces of re-sampling [ J ]. IEEE Transactions on Signal Processing, 2005, 53 (2) :758-767.
  • 3Popescu A C, Farid H. Exposing digital forgeries by detecting duplicated image regions: TR2004 - 515 [ R ]. Dartmouth MA USA : Dartmouth College, Computer Science, 2004.
  • 4Farid H, Johnson M K. Exposing Digital Forgeries by Detecting Inconsistencies in Lighting [ C ]//Proceedings of the 7th Workshop on Multimedia and Security, New York : ACM, 2005 : 1-10.
  • 5Lee J B, Yoon Y I, Doo K S, et al. Detecting digital forgeries analysis of a lighting direction [J]. IEEE International Conference on Consumer Electronics, 2007, 2 ( 3 ) : 1146-1147.
  • 6Popescu A C. Statistical Tools for Digital Image Forensics: TR2004- 128 [ R]. Dartmouth MA USA: Dartmouth College, Computer Science, 2004.
  • 7Yun Y I, Lee J B. Detection of digital forgeries using an image interpolation from digital images [ J ]. IEEE International Conference on Consumer Electronics, 2008, 53 (10): 1013- 2807.
  • 8Pauluzzi D R, Beaulieu N C. A Comparison of SNR Estimation Techniques for the AWGN Channel [ J]. IEEE Transactions on Communications, 2000, 48 ( 10 ) : 1681 - 1691.
  • 9Popescu A C, Farid H. Exposing digital forgeries in color filter array interpolated images [ J ]. IEEE Transactions on Signal Processing, 2005, 53(10) :3948-3959.
  • 10Hsu Y F, Chang S F. Detecting image splicing using ge- ometry invariants and camera characteristics consistency [ C ]//Proc of International Conference Multimedia and Expo. Toronto : IEEE, 2006.549-552.

共引文献19

同被引文献28

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部