期刊文献+

基于相似函数与相似网络的可逆网络化简

Reversible Network Simplification with Similar Function and Similar Network
下载PDF
导出
摘要 提出了可逆函数的相似函数及可逆网络的相似网络,在此基础上构建了可逆网络化简方法。由可逆函数求出其所有的相似函数,对每个相似函数利用可逆逻辑综合算法生成可逆网络,再将其转换成对应的相似网络,并从中选取最优。该网络化简算法实现了生成三变量全部可逆函数和多变量可逆函数的可逆网络,与相关文献及Benchmark中的例题相比,构造可逆网络的门数较少,具有一定的优势。 This paper presented the similar function of the reversible function and the similar network of the reversible network,and on the basis of that,the simplification method of reversible network was constructed.Giving a reversible function,all its similar functions can be searched.To every similar function,the reversible network which is converted to its corresponding similar network,can be constructed by reversible logic synthesis algorithm,and the optimum can be chosen.The network simplification algorithm realizes the reversible network of all 3-variable functions and some multivariable functions.Compared with the pertinent literature and the examples of Benchmark,it has some advantages while constructing the reversible network with less gate count.
出处 《计算机科学》 CSCD 北大核心 2014年第B11期195-198,共4页 Computer Science
基金 国家自然科学基金(60873069) 南通纺织职业技术学院科研项目(FYKY/2013/7) 南通大学研究生科技创新计划项目(YKC13006)资助
关键词 可逆逻辑 可逆网络 相似函数 相似网络 Reversible logic Reversible network Similar function Similar network
  • 相关文献

参考文献13

  • 1Bennett C H. Logical reversibility of computation[J]. IBM Jour nal of Research and Development, 1973,17(6) :525-532.
  • 2管致锦,秦小麟,陶涛,施.可逆逻辑门网络的表示与级联[J].电子学报,2010,38(10):2370-2376. 被引量:10
  • 3王冬,陈汉武,安博,杨忠明.基于矩阵初等变换的四量子比特可逆电路综合算法[J].电子学报,2010,38(11):2561-2565. 被引量:2
  • 4李志强,陈汉武,徐宝文,肖芳英,薛希玲.四量子可逆逻辑电路快速综合算法[J].电子学报,2008,36(11):2081-2089. 被引量:14
  • 5Pang Yu, Wang Shao-quan, He Zhi-long, et al. Positive Davio- based synthesis algorithm for reversible logic[C] // Proceedings of International Conference on Computer Design. New Jersey: Institute of Electrical and Electronics Engineers Inc. , 2011 : 212- 218.
  • 6Shende V V, Prasad A K, Markov I L, et al. Synthesis of reversi ble logic circuits [J]. Computer-Aided Design of Integrated Cir cults and Systems,2003,22(6):710-722.
  • 7Gupta P, Agrawal A,Jha N K. An algorithm for synthesis of re versible logic circuits [J]. Computer-Aided Design of Integrated Circuits and Systems,2006,25(ll) :2317-2330.
  • 8Maslov D, Dueek G W, Miller D M. Toffoli network synthesis with templates [J]. Computer Aided Design of Integrated Cir- cuits and Systems, 2005,24 (6) .. 807-817.
  • 9Saeedi M, Sedighi M, Zamani M S. A novel synthesis algorithm for reversible circuits[C]//Proeeedings of the 2007 IEEE/ACM International Conference on Computer-Aided Design. Los A lamitos.- IEEE Computer Society Press, 2007 : 65-68.
  • 10Zheng Y, Huang C. A novel Toffoli network synthesis algorithm for reversible logic[C]//Proceedings of the 2009.Asia and South Pacific Design Automation Conference. Los Alamitos: IEEE Computer Society Press,2009 : 739-744.

二级参考文献55

  • 1D Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer [J] .Proc Royal Soc London, 1985,400(1818) :97 - 117.
  • 2E Fredkin, T Toffoli. Conservative logic [ J]. International Journal of Theoretical Physics, 1982,21:219 - 253.
  • 3X Y Song,G W Yang,M Perkowski, et al.Algebraic characteristics of reversible gates [ J ]. Theory of Computing Systems,2005,39(2):311- 319.
  • 4D Maslov, G W Dueck, D M Miller. Toffoli network synthesis with templates [ J ]. IEEE Trans on Circuits and Systems-I, 2005,24(6) : 807 - 817.
  • 5W Q Li,H W Chen, Z Q Li. Application of semi-template in reversible logic circuit [A]. Proceedings of the 11 th International Conference on CSCWD [ C]. Melbourne, Australia, 2007. 155 - 161.
  • 6P Gupta, A Agrawal, N K Jha. An algorithm for synthesis of reversible logic circuits [ J].IEEE Trans on Circuits and Systems-I,2006,25(11) :807 - 817.
  • 7V V Shende, A K Prasad, I L Markov, et al. Synthesis of reversible logic circuits [J]. IEEE Trans on Circuits and Systems-I, 2003,22 (6) : 723 - 729.
  • 8G W Yang,X Y Song,M Perkowski, et al. Fast synthesis of exact minimal reversible circuits using group theory [ A ]. Proceedings of IEEE ASP-DAC 2005 [ C ]. Shanghai, China, 2005. V2,18 - 21.
  • 9G W Yang,X Y Song, W N N Hung, M Perkowski. Bi-directional synthesis of 4-bit reversible circuits [J ]. The Computer Journal, 2008,51 (2) : 207 - 215.
  • 10G L Long, Y Sun. Efficient scheme for initializing a quantum register with an arbitrary superposed state [J]. Phys Rev A, 2001,64(1) :014303:1 - 8.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部