期刊文献+

基于子空间聚类算法的流量分类方法研究 被引量:2

Network Traffic Classification Method Research Based on Subspace Clustering Algorithm
下载PDF
导出
摘要 目前网络流量业务类型具有不断变化和业务特征不断更新两大特点,但是,现有的流量分类器由于存在业务特征库更新代价大、误判率高等缺点,而无法满足正常的业务分类需求。因此需要设计一种子空间聚类算法来实现业务分类精细化,保障分类精确率、召回率以及效率等特性。实验验证表明,子空间聚类算法的业务分类精细化程度高,分类精确率平均超过95%,训练数据需求量低,并且这类方法对于改进DPI分类器对网络环境的适应能力有重大意义。 Currently,service types,features of network traffic are changing constantly,but existing classification methods aren't able to satisfy such network traffic environment,because they lack capability to update features library efficiently,and have high misjudgement rate.So a subspace clustering algorithm was designed to test classification properties.Experemnts show that it can classify lots of business types,its classification precision rate exceeds 95%,and quantity demand of training samples is low.It is recommended to help DPI classifier adapt to changing network environment.
出处 《计算机科学》 CSCD 北大核心 2014年第B11期301-306,319,共7页 Computer Science
基金 国家重点基础研究发展计划(973计划)资金项目(2012CB315903) 国家自然科学基金项目(61103200 61379118) 浙江省重点科技创新团队(2011R50010)资助
关键词 深度包检测 机器学习 流量分类 子空间聚类 Deep packet inspection Machine learing Traffic classification Subspace clustering
  • 相关文献

参考文献24

  • 1Chandrashekar J, Zhang Z L, Zhenhai D, et al. Towards a service oriented internet[J]. IEICE transactions on communications, 2006,89 (9) .. 2292-2299.
  • 2Srinivasan S R, Lee J W, Liu E, et al. Netserv.. Dynamically de ploying in-network services[C]//Proceedings of the 2009 work shop on Re-architecting the internet. ACM, 2009.. 37-42.
  • 3Femminella M, Francescangeli R, Reali G, et al. An enabling platform for autonomic management of the future internetFJ. Net work, IEEE, 2011,25 (6) : 24 32.
  • 4Arthur C, Carlos K, Stnio F, et al. A Survey on Internet Traffic Identification and Classification[J]. Communications Surveys and Tutorials, IEEE, 2009,11 (3) : 37-52.
  • 5Moore A, Zuev D, Crogan M. Discriminators for use in flow- based classification[M]. Queen Mary and Westfield College, De- partment of Computer Science, 2005.
  • 6Szab6 G, Szab6 I, Orincsay D. Accurate traffic classification [C]// IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, 2007 (WoWMoM 2007 ). IEEE, 2007: 1-8.
  • 7Kumar S, Dharmapurikar S, Yu F, et al. Algorithms to accelerate multiple regular expressions matching for deep packet inspection [J]. ACM S1GCOMM Computer Communication Review, 2006, 36(4) : 339-350.
  • 8Smith R,Estan C, Jha S, et al. Deflating the big bang: fast and scalable deep packet inspection with extended finite automata [J]. ACM SIGCOMM Computer Communication Review, 2008, 38(4):207-218.
  • 9Haffner P, Sen S, Spatscheck O, et al. ACAS automated con- struction of application signatures[C]//Proceedings of the 2005 ACM SIGCOMM workshop on Mining network data. ACM, 2005:197-202.
  • 10Moore A W, Zuev D. Internet traffic classification using bayesian analysis techniques[J]. ACM SIGMETRICS Performance Eva- luation Review,2005,33(1) :50-60.

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部