期刊文献+

心肌细胞钾通道调控早期后除极的动力学机制 被引量:1

Dynamic Mechanisms of Afterdepolarization in the Early Regulation of Cardiac Potassium Channel
下载PDF
导出
摘要 针对心肌细胞动作电位复极期振荡的早期后除极(EAD)现象,研究了细胞模型Hopf分岔和EADs的关系以及钾离子通道的作用。在LR91模型中剔除快钠离子电流并引入控制钙和钾离子通道时常数的控制因子形成子系统模型,分离出模型中不同时间尺度的变量,将跨膜电势、钙离子通道激活及失活门控变量视为快变量构成三变量快子系统,慢变量钾离子通道门控参数视为其分岔参数分析膜电位与快子系统稳定性的关系。计算机仿真结果表明,随着钾离子通道门控变量时常数的增大,膜电位越来越接近快子系统的吸引域和Hopf分岔点。当时常数增大到6倍时动作电位时程延长至1 060ms并开始出现膜电位的振荡,时常数增大到15倍时电位振荡个数增加至15,说明快子系统的Hopf分岔导致了钾通道门控作用下EAD的诱发。 The relationships between the Hopf bifurcation in the cellular model and the Early Afterdepolarization (EAD) and the function of potassium channel are investigated for the EAD phenomenon of the voltage oscillation during the repolarizing phase of the cardiac action potential. A subsystem model is developed by removing the fast activated sodium current in the LR91 model and introducing control factors for time constants of calcium and potassium channels. Variables with different time scales are separated. A fast subsystem with 3 variables is formed and the variables are voltage, activation and inactivation gating variables of calcium channel. The relationship between the voltage and the steady state of the fast subsystem is analyzed by regarding the gating variable of the potassium channel as a bifurcation parameter. Simulation results show that the voltage approaches the attraction and Hopf bifurcation point more and more as the time constant of potassium channel gating variable increases. The action potential duration (APD) is prolonged to 1 060 ms and the voltage oscillation appears when the time constant is 6 times of its control value. The number of the oscillation waves increases to 15, when the time constant approaches 15 times. The results show that the Hopf bifurcation of the fast subsystem results in induction of EAD under the control of the potassium channel.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2014年第11期92-96,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(81271661) 教育部回国留学基金资助项目(第40批) 中央高校基本科研业务费专项资金资助项目(xjj2011087)
关键词 钾离子通道 早期后除极 HOPF分岔 动作电位 计算机仿真 potassium ionic channel early afterdepolarization Hopf bifurcation action potential computer simulations
  • 相关文献

参考文献13

  • 1王军奎,于忠祥,崔长琮.药物致尖端扭转型室性心动过速的发生机制[J].南方医科大学学报,2013,33(7):1093-1096. 被引量:12
  • 2ZHAO Zhenghang, WEN Hairuo, FEFELOVA N, et al. Revisiting the ionic mechanisms of early afterdepo- larizations in cardiomyocytes: predominant by Ca waves or Ca currents [J]. American Journal of Physi- ology-Heart and Circulatory Physiology, 2012, 302 (8) : H1636-H1644.
  • 3VOLDERS P G, VOS M A, SZABO B, et al. Pro- gress in the understanding of cardiac early afterdepo- larizations and torsades de pointes: time to revise cur- rent concepts [J]. Cardiovascular Research, 2000, 46 (3) : 376-392.
  • 4LI Guirong, LAU C P, DUCHARME A, et al. Trans- mural action potential and ionic current remodeling inventricles of failing canine hearts [J]. American Jour- nal of Physiology-Heart and Circulatory Physiology, 2002, 283(3) : H1031-H1041.
  • 5WEISS J N, GARFINKEL A, KARAGUEUZIAN H S, et al. Early afterdepolarizations and cardiac ar- rhythmias [J]. Heart Rhythm, 2010, 7 (12) .. 1891- 1899.
  • 6QU Zhilin, XIE Laihua, OLCESE R, et al. Early af- terdepolarizations in cardiac myocytes: beyond reduced repolarization reserve [J]. Cardiovascular Research, 2013, 99(1): 6-15.
  • 7王江,张骅,曾启明.肌肉中的HH模型钠离子通道反电势的Hopf分岔分析[J].系统仿真学报,2004,16(10):2276-2279. 被引量:2
  • 8LUO C H, RUDY Y. A model of the ventricular car- diac action potential depolarization, repolarization and their interaction [J]- Circulation Research, 1991, 68 (6) : 1501-1526.
  • 9TRAN D X, SATO D, YOCHELIS A, et al. Bifurca- tion and chaos in a model of cardiac early afterdepolar- izations [J]. Physical Review Letters, 2009, 102 (25) : 2581031-2581034.
  • 10金印彬,杨琳,张虹,阔永红,黄诒焯,蒋大宗.二维心室肌中动作电位传导的数值算法研究[J].西安交通大学学报,2004,38(8):851-854. 被引量:7

二级参考文献39

  • 1[1]Hodgkin A L, Huxley A F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo [J]. J.Pjysiol. 1952, 116: 449-472.
  • 2[2]Hodgkin A L, Huxley A F. The components of membrane conductance in the giant axon of Loligo [J]. J.Pjysiol. 1952, 116: 473-496.
  • 3[3]Hodgkin A L, Huxley A F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo [J]. J.Pjysiol. 1952, 116: 497-506.
  • 4[4]Hodgkin A L, Huxley A F. A quantitative description of membrane and its application to conduction and excitation in nerve [J]. J. Pjysiol. 1952, 117: 500-544.
  • 5[5]FitzHugh R. Mathematical models of excitation and propagation in nerve [M]. In Biological Engineering. H.P. Schwan, ed. Chap.1. New York: McGraw-Hill.
  • 6[6]Troy W C. Oscillation phenomena in the Hodgkin-Huxley equations [J]. Proc. Roy. Soc. Edinburgh, 1985, 74A: 299-310.
  • 7[7]Hassard B. Bifurcation of periodic solutions of the Hodgkin-Huxley model for the squid giant axon. J. Theor [J]. Biol. 1978, 71: 401-420.
  • 8[8]Rinzel J. One repetitive activity in nerve [J]. Fed Proc 1978, 37: 2793-2802.
  • 9[9]Troy W C. The bifurcation in the Hodgkin-Huxley equations [J]. Q. Appl. Math. 1978, 36: 73-83.
  • 10[10]Rinzel J, Miller RN. Numerical calculation of stable and unstable solutions to the Hodgkin-Huxley equations [J]. Math. Biosci. 1980, 49: 27-59.

共引文献18

同被引文献12

  • 1何庆,万智.心脏电除颤发展史[J].中华医史杂志,2007,37(3):161-164. 被引量:6
  • 2ZHAO Zhenghang, WEN Hairuo, FEFELOVA N, et al. Revisiting the ionic mechanisms of early after-depolarizations in cardiomyocytes: predominant by Ca waves or Ca currents[J].American Journal of Physiology: Heart and Circulatory Physiology, 2012, 302(8): H1636-H1644.
  • 3QU Zhilin, XIE Laihua, OLCESE R, et al. Early afterdepolarizations in cardiac myocytes: beyond reduced repolarization reserve[J].Cardiovascular Research, 2013, 99(1): 6-15.
  • 4LANGE E D, XIE Yuanfang, QU Zhilin. Synchronization of early afterdepolarizations and arrhythmogenesis in heterogeneous cardiac tissue models[J].Biophysical Journal, 2012, 103(2): 365-373.
  • 5LIU Gongxin, CHOI B R, ZIV O, et al. Differential conditions for early afterdepolarizations and triggered activity in cardiomyocytes derived from transgenic LQT1 and LQT2 rabbits[J].Journal of Physiology, 2012, 590(5): 1171-1180.
  • 6MASATOSHI Y, HARUO H, HARUMICHI N, et al. Mechanisms of destabilization and early termination of spiral wave reentry in the ventricle by a class III antiarrhythmic agent, nifekalant[J].American Journal of Physiology: Heart and Circulatory Physiology, 2007, 292(1): H539-H548.
  • 7TRAYANOVA N. Defibrillation of the heart: insights into mechanisms from modelling studies[J].Experimental Physiology, 2006, 91(2): 323-337.
  • 8AMBROSI C M, RIPPLINGER C M, EFIMOV I R, et al. Termination of sustained atrial flutter and fibrillation using low-voltage multiple-shock therapy[J].Heart Rhythm, 2011, 8(1): 101-108.
  • 9CONSTANTINO Y, ASHIHARA T, TRAYANOVA N A, et al. Tunnel propagation following defibrillation with ICD shocks: hidden post-shock activations in the left ventricular wall underlie isoelectric window[J].Heart Rhythm, 2010, 7(7): 953-961.
  • 10LUO C H, RUDY Y. A model of the ventricular cardiac action potential, depolarization, repolarization, and their interaction[J].Circulation Research, 1991, 68(6): 1501-1526.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部