期刊文献+

多重网格在黏性流动最小二乘等几何模拟中的应用 被引量:3

An Application of Multigrid in Viscous Flow Simulations with Least Squares Isogeometric Method
下载PDF
导出
摘要 针对最小二乘等几何方法模拟黏性流动时条件数大、迭代法收敛速度慢的问题,提出了基于多重网格技术的加速方法。计算中自动生成一系列疏密不同的网格,在最密网格上用最小二乘等几何方法将Navier-Stokes方程离散为代数方程组,用多重网格方法作为独立求解器或共轭梯度法的预处理器迭代求解所得到的代数方程组。对雷诺数为100、400、1 000和2 500的顶盖驱动流进行了数值模拟,计算中进行23次迭代可使方程组的余量降低10个数量级,流动特征量的计算误差在1%以内。计算结果表明,通过多重网格技术加速迭代,提高了最小二乘等几何方法模拟黏性流动的计算效率。 A multigrid technique to accelerate iteration is proposed to solve the problem of low convergence rate due to large condition number in simulating viscous flow with the least squares isogeometric method. A series of grids with different element sizes are automatically generated in analysis. The least squares isogeometric method is used to discretize the Navier-Stokes equations into a system of linear equations on the densest grid, and the system is iteratively solved using either the multigrid method as standard solver or the preconditioner of the conjugate gradient method. Numerical simulations are performed on lid driven cavity flow with Re= 100, 400, 1 000 and 2 500. The residual of algebraic equations is reduced about 10 order of magnitude after 23 iterations, and the calculation error on characteristic parameters of the cavity flow is less than 1%. The results show that the performance of the least squares isogeometrie method for viscous flow is improved when the multigrid acceleration technique is used.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2014年第11期122-127,共6页 Journal of Xi'an Jiaotong University
基金 国家"973计划"资助项目(2011CB706505)
关键词 多重网格 最小二乘 等几何方法 共轭梯度法 NAVIER-STOKES方程 multigrid least squares isogeometric method conjugate gradient method Navier- Stokes equations
  • 相关文献

参考文献14

  • 1陈德祥,徐自力,刘石,冯永新.求解Stokes方程的最小二乘等几何分析方法[J].西安交通大学学报,2013,47(5):51-55. 被引量:8
  • 2CHEN Dexiang, XU Zili, LIU Shi, et al. Least squares finite element method with high continuity NURBS ba- sis for incompressible Navier-Stokes equations [J]. Journal of Computational Physics, 2014, 260 204- 221.
  • 3SAAD Y. Iterative methods for sparse linear systems [M]. Philadelphia, USA.. SIAM, 2003.
  • 4GAHALAUT K P S, KRAUS J K, TOMAR S K. Multigrid methods for isogeometric discretization [J]. Computer Methods in Applied Mechanics and Engi-neering, 2013, 253: 413-425.
  • 5刘石,陈德祥,冯永新,徐自力,郑李坤.等几何分析的多重网格共轭梯度法[J].应用数学和力学,2014,35(6):630-639. 被引量:13
  • 6陈德祥,窦柏通,徐自力,胡哺松.最小二乘等几何分析的多重网格方法[J].西安交通大学学报,2014,48(7):124-130. 被引量:4
  • 7BRANDT A, LIVNE 0 E. Multigrid techniques: 1984 guide with applications to fluid dynamics [M]. Phila- delphia, USA: SIAM, 2011.
  • 8TATEBE O. The multigrid preconditioned conjugate gradient method [C] ff The Sixth Copper Mountain Conference on Multigrid Methods. Copper Mountain, USA: NASA, 1993: 621-634.
  • 9TROTTENBERG U, OOSTERLEE C W, SCHUL- LER A. Multigrid [ M ]. London, UK.. Academic Press, 2000: 28-50.
  • 10MARCHI C H, SUERO R, ARAKI L K. The lid- driven square cavity flow: numerical solution with a 1 024 X 1 024 grid [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2009, 31 (3): 186-198.

二级参考文献39

  • 1BABUgKA I. Error-bounds for finite element method [J]. Numerische Mathematik, 1971, 16(4): 322-333.
  • 2BREZZI F, FORTIN M. Mixed and hybrid finite ele- ment methods [M]. New York, USA: Springer- Verlag, 1991.
  • 3BOCHEV P B, GUNZBURGER M D. Finite element methods of least-squares type[J].Siam Review, 1998, 40(4): 789-837.
  • 4BOCHEV P B, GUNZBURGER M D. A locally con- servative mimetic least-squares finite element method for the Stokes equations[J]. Large-Scale Scientific Computing, 2010, 5910: 637-644.
  • 5PONTAZA J P. A least-squares finite element formu- lation for unsteady incompressible flows with improved velocity-pressure coupling [J].Journal of Computa- tional Physics, 2006, 217(2): 563-588.
  • 6PRABHAKAR V, REDDY J N. A stress-based least- squares finite-element model for incompressible Navier- Stokes equations [J].International Journal for Numer- ical Methods in Fluids, 2007, 54(11): 1369-1385.
  • 7BOCHEV P B, GUNZBURGER M D. Analysis of least- squares finite-element methods for the Stokes equations [J]. Mathematics of Computation, 1994, 63 (208): 479-506.
  • 8BOCHEV P B, GUNZBURGER M D. Least-squares finite element methods [M]. New York, USA: Springer-Verlag, 2009.
  • 9HUGHES T J R, COTTRELL J A, BAZILEVS Y. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement [J]. Computer Methods in Applied Mechanics and Engi- neering, 2005, 194(39/40/41): 4135-4195.
  • 10PIEGL L A, TILLER W. The NURBS book[M]. New York, USA: Springer-Verlag, 1997.

共引文献18

同被引文献14

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部