期刊文献+

基于区间不确定性的多学科可靠性设计 被引量:2

Optimization of Multidisciplinary Reliability Design Based on Interval Uncertainty
下载PDF
导出
摘要 针对随机可靠性设计和多学科设计直接结合中存在的随机可靠性无法解决不确定性信息量较少及直接结合的嵌套结构计算效率较低的问题,采用区间描述有限信息的不确定性,以非概率可靠性指标衡量多学科系统的可靠性,建立了基于区间不确定性的多学科可靠性设计模型.同时,为了提高计算效率,采用性能测量法来减少可靠性分析的计算量,并引入序列优化与可靠性评估方法将三层嵌套的多学科可靠性设计结构解耦为顺序执行的确定性多学科设计优化和多学科可靠性分析过程,降低了计算复杂性.通过一个算例验证了该方法的可行性和有效性.结果表明,相比多学科可行法,单学科可行法的计算效率较高. Aimed at the problem resulted from the direct integration of random reliability-based design and multidisciplinary design optimization that the random reliability method cannot solve the problem with lim- ited uncertainty information and the nested structure of direct integration has low computational efficiency, the model of interval uncertainty based muhidisciplinary reliability design was presented, in which the un- certainty with limited information was described with interval variable and the reliability of multidisciplinary system was measured with non-probabilistic reliability index. Moreover, to improve the efficiency, the performance measurement approach was applied to reduce the computational cost of the reliability anal ysis and the sequential optimization and reliability assessment method were applied to simplify the computation process through decoupling the 3-layer nested structure into sequential deterministic multidisciplil,ary design optimization and multidisciplinary reliability the feasibility and es ffectiveness of the method. The result sciplinary design optimization(MDO) ; analysis. A numerical exampl s show that IDF has higher elf e was mlency used to test than MDF.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2014年第10期1451-1456,共6页 Journal of Shanghai Jiaotong University
基金 陕西省自然科学基金(2011JQ6007)资助项目
关键词 多学科设计优化 区间不确定性 性能测量法 序列优化与可靠性评估 multidisciplinary design optimization(MDO) interval uncertainty performance measurementapproach(PMA) sequential optimization and reliability assessment(SORA)
  • 相关文献

参考文献14

  • 1Chiralaksanakul A, Mahadevan S. Decoupled approach to multidisciplinary design optimization under uncertainty [J]. Optimization Engineering, 2007, 8(1): 21-42.
  • 2Zaman K. Modeling and management of epistemic uncertainty for multidisciplinary system analysis and design [D]. Tennessee: Faculty of the Graduate School of Vanderbilt University, 2010.
  • 3黄洪钟,余辉,袁亚辉,张小玲,李彦锋.基于单学科可行法的多学科可靠性设计优化[J].航空学报,2009,30(10):1871-1876. 被引量:10
  • 4仝令胜,石博强,申焱华,姜勇,郭朋彦.基于FORM的齿轮传动多学科优化设计[J].机械工程学报,2010,46(3):42-46. 被引量:16
  • 5Sues R H,Cesare M A. An innovative framework for reliability-based MDO[R]. Atlanta: AIAA, 2000.
  • 6Padmanabhan D. Reliability-based optimization for multidisciplinary system design[D]. Indiana: Graduate School of the University of Notre Dame,2003.
  • 7Du X, Guo J, Harish B. Sequential optimization and reliability assessment for multidisciplinary systems design. [J].Structural and Multidisciplinary Optimization,2008, 35(2): 117-130.
  • 8Elishakoff I. Essay on uncertainties in elastic and viscoelastic structures: From A M Freudenthal’s criticisms to modern convex modeling[J]. Computers & Structures, 1995, 56 (6): 871-895.
  • 9Ben-Haim Y. A non-probabilistic concept of reliability[J]. Structural Safety, 1994, 14(4): 227-245.
  • 10郭书祥,吕震宙,冯元生.基于区间分析的结构非概率可靠性模型[J].计算力学学报,2001,18(1):56-60. 被引量:294

二级参考文献34

  • 1韩明红,邓家禔.协同优化算法的改进[J].机械工程学报,2006,42(11):34-38. 被引量:34
  • 2Hasofer M A, Lind N C. Exact and invariant second-moment code format[J].ASCE J Eng Mech Div, 1974, 100 (EM1) : 111-121.
  • 3Breitung K. Asymptotic approximations for multinomial integrals[J]. Journal of Engineering Mechanics, 1984, 110(3): 357-366.
  • 4Du X, Chen W. Sequential optimization and reliability assessment for probabilistie design[J]. ASME Journal of Mechanical Design, 2004, 126(2): 225- 233.
  • 5Du X, Sudjianto A, Chen W. An integrated framework for optimization under uncertainty using inverse reliability strategy[J]. ASME Journal of Mechanical Design, 2004, 126(4): 562- 570.
  • 6Padmanabhan D. Reliability-based optimization for multi- disciplinary system design [ D]. Indiana: University of Notre Dame, 2003.
  • 7Balling R J, Sobieszczanski J S. An algorithm for solving the system level problem in multilevel optimization [J].Structural Optimization,1995, 9(3/4): 168 -177.
  • 8Bailing R J, Wilkison C A. Execution of multidisciplinary design optimization approaches on common test problems [J]. AIAA Journal, 1997, 35(1): 178-186.
  • 9Shin M K, Park G J. Multidisciplinary design optimization based on independent subspaces[J].Int J Numer Methods Eng, 2005, 64(5): 599-617.
  • 10Kroo I, Altus S, Braun R. Multidisciplinary optimization methods for aircraft preliminary design[R]. AIAA- 1994- 4325,1994.

共引文献314

同被引文献25

  • 1BEN-HAIM Y, ELISHAKOFF I. Convex models of uncer- tainty in applied mechanics[M]. Amsterdam, the Nethlands: Elsevier Science, 1990.
  • 2BEN-HAIM Y. A non-probabilistic concept of reliability[J]. Structral Safety, 1994,14(4) : 227-245.
  • 3ELISHAKOFF I. Essay on uncertainties in elastic and viscoe- lastic structures: from a m freudenthal's criticisms to modern convex modeling[J]. Computers & Structures, 1995,56 (6) : 871-895.
  • 4GU Xiaoyu, RENAUD J E, BA TILL S M. An investigation of multidisciplinary design subject to uncertainty [C]//Pro- ceedings of the 7th AIAA/ USAF/ NASA/ ISSMO Symposi- um on Multidisciplinary Analysis and Optimization. Reston, Va. ,USA:AIAA, 1998:AIAA2199824747.
  • 5DU X, CHEN W. Sequential optimization and reliability as- sessment method for efficient probabilistic design[C]//Pro- ceedings of ASME 2002 Design Engineering Technical Confer- ence and Computers and Information in Engineering Confer- ence. New York, N. Y. , USA:ASME,2002.
  • 6GU X, RENAUD J E. Implicit uncertainty propagation for robust collaborative optimization [C]//Proceedings of DE- TC01 ASME 2001 Design Engineering Technical Conferences and Computers and Imformation in Engineering Conference. New York, N. Y. ,USA:ASME,2001.
  • 7STEWARD D V. Systems analysis and management:struc- ture, strategy, and design[M]. New York,N. Y. ,USA:Pet- rocelli Books, 1981.
  • 8KUSIAK A, ZHU J, WANG J. Algorithm for simplification of the design process[C]//Proceedings of the 1993 NSF De- sign and Manufacturing Systems Conference, Society of Man- ufacturing Engineers. Dearborn, Mi., USA:National Science Foundation, 1993 : 1107-1111.
  • 9ROGERS J L, MCCULLEY C M, BLOEBAUM C L. In- tegrating a genetic algorithm into a knowledge-based system for ordering complex design processes[M]. Berlin, Germa- ny: Artificial Intelligence in Design 96,1996.
  • 10ALTUS S S, KROO I M, GAGE P J. A geneticalgorithm for scheduling and decomposition of multidisciplinary design problems[J]. ASME Journal of Mechanical Design, 1996,118 (4) :486-489.

引证文献2

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部