期刊文献+

融合形态学灰度重建与三角网分层加密的LiDAR点云滤波 被引量:10

Integrating Morphological Grayscale Reconstruction and TIN Models for High-quality Filtering of Airborne LiDAR Points
原文传递
导出
摘要 形态学滤波与三角网加密滤波是从LiDAR点云中自动识别真实地面点的两种重要方法,本文分析了两种方法优劣性及其过程实施的特点,提出了一种融合形态学灰度重建与不规则三角网分层加密的点云滤波新策略:1首先对LiDAR点云实施Ⅰ类错误优先的形态学灰度重建初始滤波,并通过"非最小值抑制"将LiDAR点云标记为地面可靠点、地面可疑点、非地面可疑点三种类别;2依据形态学灰度重建迭代顺序对非地面可疑点进行分层标记;3利用地面可靠点构建初始三角网,对地面可疑点、非地面可疑点依次进行三角网加密滤波,并基于分层标记信息自适应调整地面点判据参数。ISPRS标准数据滤波实验结果表明,本方法滤波质量高且具有较好的通用性。 Based on the characteristics of the morphological filter and the TIN-based progressive filter, a high-quality LiDAR point cloud filtering algorithm combining Morphological grayscale reconstruction and TIN Models is proposed in this paper. Its main strategies are. (1)Implementing morphological grayscale reconstruction with a priority of Type I Error and non-minimum suppression. In this step, LiDAR point clouds are tagged as Reliable terrain points G, suspicious terrain points S and suspicious Non-terrain points NG; (2)Suspicious non-terrain points are further tagged based on the iterative order of Morphological grayscale reconstruction. In this step, small and constant height interval is used to filter the possible non-terrain points at different elevation; (3)Constructing the initial TIN from points G and further filtering points S and NG points, respectively, by adaptively adjusting the parameters of the ground point criterion at associated point layer. We did an experiment with 15 ISPRS test data sets and assessed the results with the standard criterion as found in the literature. The result shows that proposed filtering algorithm dramatically improved filtering quality, even for complex terrain.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2014年第11期1298-1303,共6页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(41271362 60962003 41171356) 广西研究生教育创新资助项目(YCSZ2012074) 桂林电子科技大学创新团队资助项目~~
关键词 LIDAR 滤波 形态学灰度重建 TIN LiDAR filtering morphological grayscale reconstruction; TIN
  • 相关文献

参考文献15

  • 1Axelsson P. DEM Generation from Laser ScannerData Using Adaptive TIN Models[J]. InternationalArchives o f Photogrammetry and Remote Sensing2000, 33(Part4-B4/l): 111-118.
  • 2Lee H S,Younan N H. DTM Extraction of LiDARReturns via Adaptive Processing [J]. IEEE Trans-actions on Geoscience and Remote Sensing.2003,41(9): 2 063-2 069.
  • 3左志权,张祖勋,张剑清.知识引导下的城区LiDAR点云高精度三角网渐进滤波方法[J].测绘学报,2012,41(2):246-251. 被引量:28
  • 4Kraus K, Pfeifer N. Determination of Terrain Mod-els in Wooded Areas with Airborne Laser ScannerData[J]. ISPRS Journal of Photogrammetry andremote Sensing , 1998,53(4) : 193-203.
  • 5Kilian J,Haala N,Englich M. Capture and Evalua-tion of Airborne Laser Scanner Data[J]. InternationalArchives o f Photogrammetry and Remote Sensing y1996, 31: 383-388.
  • 6Zhang Keqi. Chen Shuching, Whitman I),et al. AProgressive Morphological Filter for Removing Non-ground Measurements from Airborne LiDAR Data[J], Geoscience and Remote Sensing , IEEE Trans-actions on , 2003. 41(4): 872-882.
  • 7Chen Qi,Gong Peng, Baldocchi D D. et al. FilteringAirborne Laser Scanning Data with MorphologicalMethods[J]. Photogrammetric Engineering and Re-mote Sensing , 2007,73(2) ; 175-185.
  • 8隋立春,张熠斌,柳艳,曲佳,李伟,王蒙,李智临.基于改进的数学形态学算法的LiDAR点云数据滤波[J].测绘学报,2010,39(4):390-396. 被引量:85
  • 9Vincent L. Morphological Grayscale Reconstructionin Image Analysis : Applications and Efficient Algo-rithms [J]. Image Processing , IEEE Transactionson,1993,2(2) :176-201.
  • 10Arefi H,Hahn M. A Morphological ReconstructionAlgorithm for Separating Off-terrain Points fromTerrain Points in Laser Scanning Data[J]. Interna-tional Archives of Photo grammetry,Remote Sensingand Spatial Information Sciences,2005,36 (3/W19) :120-124.

二级参考文献32

  • 1张小红.利用机载LIDAR双次回波高程之差分类激光脚点[J].测绘科学,2006,31(4):48-50. 被引量:40
  • 2李勇,吴华意.基于形态学梯度的机载激光扫描数据滤波方法[J].遥感学报,2008,12(4):633-639. 被引量:22
  • 3KRAUS K, PFEIFER N. Determination of Terrain Models in Wooded Areas with ALS Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1998, 53:193-203.
  • 4AXELSSON P E. DEM Generation from Laser Scanner Data Using Adaptive TIN Models[C]//IAPRS. 2000, 33 (B4):110-117.
  • 5VOSSELMAN G. Slope Based Filtering of Laser Atimetry Data[J]. IAPRS, 2000, 33(B3): 935-942.
  • 6SITHOLE G, VOSSELMAN G. Experimental Comparison of Filter Algorithms for Bare-earth Extraction from Airborne Laser Scanning Point Clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 59(1/2): 85-101.
  • 7RABBANI T, HEUVEL F A, VOSSELMAN G. Segmentation of Point Couds Using Smoothness Constraint [J]. International Archives of Photogrammetry, Remote Sen sing and Spatial Information Sciences. 2006, 36 (5) 248-253.
  • 8RABBANI T, DIJKMAN S, HEUVEL F, et al. An Integrated Approach for Modelling and Global Registration of Point Clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 61: 355-370.
  • 9VOSSELMAN G, KESSELS P, GORTE B G H. The Utilisation of Airborne Laser Scanning for Three-dimensional Mapping[J]. International Journal of Applied Earth Observation and Geoinformation, 2005, 6 ( 3/4 ): 177-186.
  • 10KRAUS K and PFEIFER N. A New Method for Surface Reconstruction from Laser Scanner Data [J] . IAPRS, 1997, ⅩⅩⅫ( 3): 80-86.

共引文献129

同被引文献124

引证文献10

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部