期刊文献+

室内信号强度指纹定位算法改进 被引量:27

Improvements of Indoor Signal Strength Fingerprint Location Algorithm
下载PDF
导出
摘要 由于人们对基于位置服务的需求越来越高,室内定位技术在诸多领域得到了广泛的应用,而定位算法则是室内定位研究的重点。首先介绍了最近邻和KNN两种信号强度指纹定位算法,并说明了KNN信号强度指纹算法的不足。在KNN信号强度指纹定位算法的基础上,提出了改进的基于区域划分的定位算法。在定位阶段,首先对接收信号强度进行补偿和滤波处理,以降低各种外在因素对定位精度的影响;同时对定位区域进行划分,选择主参考节点,并基于加权的最近邻匹配来选择最近的信号强度指纹;最后对定位结果进行计算并验证。仿真实验表明,改进的区域划分算法相对于传统的KNN算法,定位精度提高了22.2%,达到2.1m,证明了改进算法的可行性。 As people have increasingly high demand of location-based services,indoor positioning technology in many fields has been widely used,and location algorithm is most important in indoor positioning research.This paper described the nearest neighbor and KNN signal strength fingerprint location algorithm and showed the disadvantage of KNN fingerprint algorithm.On the basis of KNN localization algorithm,an improved location algorithm based on region division was proposed.In the first stage,received signal strength was compensated and filtered to reduce the influence of various external factors on the positioning accuracy.Then we divided the location area,selected the major node and the most recent signal strength fingerprints.Finally the location result was calculated and verfied.The simulation proves the improved region division algorithm improves the positioning accuracy of 22.2%,reaching 2.1mcompared with the traditional KNN algorithm,which proves the feasibility of this improved algorithm.
出处 《计算机科学》 CSCD 北大核心 2014年第11期178-181,共4页 Computer Science
关键词 位置指纹 K近邻 区域划分 室内定位 Location fingerprint KNN Region division Indoor positioning
  • 相关文献

参考文献17

  • 1Yousef N R,Sayed A H,Jalloul L M A. Robust wireless location over fading ehannels[J]. IEEE Transactions on Vehicular Tech- nology, 2003,52(1) : 117-126.
  • 2Sun G, Chen J, Guo W, et al. Signal processing techniques in net- work-aided positioning: a survey of state-of-the-art positioning designs[J]. Signal Processing Magazine, IEEE, 2005,22 (4) : 12- 23.
  • 3Sayed A H, Tarighat A, Khajehnouri N. Network-based wireless location: challenges faced in developing techniques for accurate wireless location information[J]. Signal Processing Magazine, IEEE, 2005,22(4) : 24-40.
  • 4Alavi B, Pahlavan K. Modeling of the TOA-based distance mea- surement error using UWB indoor radio measurements [J]. Communications Letters, IEEE, 2006,10 (4) : 275-277.
  • 5Curran K,Furey E,Lunney T,et al. An evaluation of indoor lo- cation determination teehnologies[J]. Journal of Location Based Services, 2011,5(2) : 61-78.
  • 6Bahl P, Padmanahhan V N. RADAR: An in-building RF-based user location and tracking system[C]//Nineteenth Annual Joint Conference of the IEEE Computer and Communications Socie- ties(INFOCOM 2000). IEEE, 2000,2 : 775-784.
  • 7Pahlavan K, Akgul F O, Heidari M, et al. Indoor geolocation in the absence of direct path[J]. Wireless Communications, IEEE, 2006,13(6) :50-58.
  • 8杨东勇,顾东袁,傅晓婕.一种基于RSSI相似度的室内定位算法[J].传感技术学报,2009,22(2):264-268. 被引量:44
  • 9Mengual L, Marbdn O, Eibe S. Clustering-based location in wire- less networks[J]. Expert Systems with Applications, 2010, 37 (9) : 6165-6175.
  • 10徐小卜,王勇,陶晓玲.基于支持向量机分类的WSN节点定位算法[J].计算机工程,2010,36(24):90-92. 被引量:10

二级参考文献44

  • 1韩屏,李方敏,吴学红.一种基于无线传感网络的实用性地下坑道定位方法[J].传感技术学报,2007,20(10):2313-2318. 被引量:8
  • 2王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:672
  • 3陈维克,李文锋,首珩,袁兵.基于RSSI的无线传感器网络加权质心定位算法[J].武汉理工大学学报(交通科学与工程版),2006,30(2):265-268. 被引量:207
  • 4Capkun S, Hamdi M and Hubaux J P. GPS-Free Positioning in Mobile Ad-Hoc Networks[C]// Proceedings of the 34th Annual Hawaii International Conference on System Science. Haiwaii, USA:IEEE Computing society, 2001. 3481-3490.
  • 5Sukhyun Y, Jaehun L, Wooyong C, Euntai K. Centroid Localization Method in Wireless Sensor Networks using TSK Fuzzy Modeling[C].//Proceedings of 8th International Symposium on Advanced Intelligent Systems (ISIS2007). Sokcho- City, Korea, 2007:971-974.
  • 6Bahl P, Padmanabhan V N. RADAR: An in-Building RF- based user Location and Tracking System [C]. // Proceedings of the IEEE INFOCOM 2000. Tel Aviv: IEEE Computer and Communications Societies, 2000. 775-784.
  • 7Hightower J, Want R, Borriello G. SpotON: an Indoor 3D Location Sensing Technology based on RF Signal Strength [D]. Seattle: University of Washington, 2000.
  • 8Alippi C, Vanini G. Wireless Sensor Networks and Radio Localization: a Metrological Analysis of the MICA2 Received Sig- nal Strength Indicator [C]. // Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN'04), Italy, 2004:16-18.
  • 9Pahlavan K, Levesque A. Wireless Information Networks [M]. NewYork: John Wiley&Sons, Ine, 1995.
  • 10Lei Qiu, Kennedy R A. Radio Location Using Pattern Matching Techniques in Fixed Wireless Communication Networks[C]//Proc. of International Symposium on Comnmnications and Information Technologies. Sydney, Australia: [s. n.], 2007.

共引文献108

同被引文献173

引证文献27

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部