期刊文献+

一种新的基于Wishart MRF的全极化SAR图像分类方法 被引量:2

New Wishart MRF Method for Fully PolSAR Image Classification
下载PDF
导出
摘要 无监督的Wishart分类算法在多次迭代后,容易出现错分现象,即多个类别属于同一类散射机制,或者多种散射都拥有相同的类别标签。针对此问题,提出了一种新的基于Wishart MRF的无监督全极化SAR图像分类方法。新方法改进了散射机制保持的方式,即并不是完全限制像素点的散射机制,而是根据像素点的散射机制在迭代过程中给定一个有限的范围。同时,使用一种自适应区域的MRF方法来提取像素点的先验信息。该方法不仅考虑了全极化SAR数据的散射性质,而且结合了统计特性和邻域信息,并在一定程度上保持了散射性质。实验结果证明,与传统的Wishart和基于散射机制保持的Wishart算法相比,该方法在JPL/NASA的AIRSAR数据上取得了更好的分类结果。 The unsupervised Wishart classifier has usually given some misclassified pixels,i.e.,several classes present the same polarimetric scattering mechanism,or one class has several different polarimetric scattering mechanisms.Aiming at it,this paper proposed a new Wishart MRF method for fully polarimetric synthetic aperture radar(PolSAR)image classification.Instead of preserving the fixed scattering characteristic,the new method sets a constrained scope for the label shifting from one to another.In addition,prior information is extracted by MRF method with an adaptive neighborhood.The physical scattering characteristic is considered,as well as the statistics information and the spatial information,and the physical scattering characteristics are preserved in a certain degree.Compared with traditional Wishart classifier and modified Wishart classifier preserving polarimetric scattering characteristics,the proposed method has better classification results on JPL/NASA AIRSAR data of San Francisco.
出处 《计算机科学》 CSCD 北大核心 2014年第11期282-285,296,共5页 Computer Science
基金 国家重点基础研究发展计划(2013CB329402) 国家自然科学基金项目(61271302 61272282 61202176 61271298) 国家教育部博士点基金(20100203120005)资助
关键词 PolSAR图像分类 目标分解 散射机制 PolSAR image classification Target decomposition Scattering mechanism
  • 相关文献

参考文献13

  • 1Shi l.ei, Zhang I.e-fei, Yang J ian, et al. Supervised graph embed- ding for polarimetrie SAR image classification [J]. IEEE Geosci- ence and Remote Sensing Letters,2013,10(2) .,216 -220.
  • 2Kersten P R, Lee J S, Ainsworth T 1: Unsupervised classifica- tion of polarimetrie synthetic aperture radar images using fuzzy clustering and [M clustering [J]. IEEE Transactions on Geosci ence and Remote Sensing, 2005,43 (3) :519-527.
  • 3Lee J S, Grunes M R, Kwok R. Classification of muhi-look po- larimetric SAR imagery based on complex Wishart distribution [J]. International Journey of Remote Sensing, 1994, 15 (11): 22992311.
  • 4Zhang Shuang, Wang Shuang, Chen Bo. et al. Classification method for ful]y PoISAR data based on three novel parameters [J]. IEEE Geoscience and Remote Sensing l.etters, 2014,11 ( 1 ) 39-43.
  • 5Cloude S R. An Entropy based classification scheme for polari- metric SAR data [C]///Proc of IEEE Int Geosei Remote Sens Symposium. Florence: IEEE, 1995 : 2000-2002.
  • 6Freeman A, Durden S I: A Three-component scattering model for polarimetric SAR data [J]. IEEE Transactions on Geoscience and Remote Sensing, 1998,36(3) : 963-973.
  • 7Krogager E. A new decomposition of the radar target scattering matrix [J]. Electronic Letter, 1990,26(18) : 1525-1526.
  • 8Cloude S R,Pottier E. A Review of target decomposition theo- rems in radar polarimetry [J]. IEEE Transactions on Geoscience and Remote Sensing, 1996,34(2) : 498-518.
  • 9Lee J S, Grunes M R, Pottier E, et al. Unsupervised terrain clas- sification preserving polarimetric scattering characteristics [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42 (4) :722-731.
  • 10Lee J S,Grunes M R, Ainsworth T L,et al. Unsupervised clas- sification using polarimetric decomposition and complex Wishartclassifier [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999,37 (5) : 2249-2348.

同被引文献28

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部