期刊文献+

一种改进偏微分方程扩散系数的图像去噪方法 被引量:1

An Image Denoising Method to Improve the Diffusion Coefficient of Partial Differential Equations
下载PDF
导出
摘要 在偏微分方程P-M模型图像去噪过程中,扩散系数的选择会影响图像去噪的效果,为此提出了一个新的扩散系数模型来实现图像去噪。首先分析讨论了P-M模型中扩散系数和梯度阈值的选取对图像去噪的重要性,并对比了两个扩散系数的优点和缺点;在此基础上提出一个新的扩散系数,并应用到CLMC模型进行数值离散实验。实验结果表明,采用新的扩散系数得到的信噪比和峰值信噪比要比P-M方程中所给出的两个扩散系数得到的信噪比和峰值信噪比好。提出的扩散系数能够有效地进行图像去噪。 In the process of partial differential equations PM model image denoising, the diffusion coefficient will affect the image denoising effect is selected, have come out with a new model of the diffusion coefficient to achieve image denoising. First, discussed the importance of the diffusion coefficient of the PM model and the gradi- ent threshold for image denoising, and compare the advantages and disadvantages of the two diffusion coefficients, a new diffusion coefficient on this basis is proposed, and applied to the CLMC model discrete numerical experiments. Experimental results show that the new diffusion coefficients better than two diffusion coefficients of P-M model in PSNR and SNR. In this paper, the diffusion coefficient can be effectively denoising.
出处 《科学技术与工程》 北大核心 2014年第31期245-248,共4页 Science Technology and Engineering
基金 国家自然科学基金项目(11261061) 国家自然科学基金项目(61362039) 国家自然科学基金项目(10661010) 新疆维吾尔自治区自然科学基金项目(200721104)资助
关键词 偏微分方程 P-M模型 CLMC模型 扩散系数 图像去噪 PDE P-M model CLMC model diffusivity image denoising
  • 相关文献

参考文献10

  • 1Li S Z.Markov random field modeling in computer version.3rd ed.London:Spring Verlag,1999:50-60.
  • 2Donoho D L Denoising by soft-thresholding.IEEE Transactions on Iformation Theory,1995 ;41 (33):613-627.
  • 3Mallat S.A wavelet tour of signal processing.2nd ed.San Diego:Elsevier,1997:486-491.
  • 4Chen G Y,Bui T D.Multiwavelets denoising using neighboring coefficients.Signal Processiug Letters,IEEE,2003 ; 10 (7):211-214.
  • 5Gabor D.Information theory in electron microscocpy.Laboratory Investigation,1965 ;45 (14):801-807.
  • 6Jain A K.Partial differential equations and finite-difference methods in image processing.Optimization Theory and Applications,1977 ;41(2):65-91.
  • 7Koenderink J J.The structure of images.Biological Cybernetics,1984 ;50(5):363-370.
  • 8Witkin A D.Scale-space filtering.Proceedings of the International Joint Conference on Artificial Intelligence,ACM Inc,1983; 39(2):1019-1021.
  • 9Perona P,Malik J.Scale-space and edge detection using anisotropic diffusion.IEEE Trans Pat tern Anal Machine lntel,1990; 12(7):629-639.
  • 10Carte F,Lions P L,Morel J M,et al.Image selective smoothing and edge detection by nonlinear diffusion.SIAM Journal on Numerical Analysis,1992; 29 (1):182-193.

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部