期刊文献+

基于稀疏距离的间歇过程故障检测方法 被引量:7

Fault-Detection Method for Batch Process Based on Sparse Distance
原文传递
导出
摘要 针对间歇过程多工序、变量非线性、非高斯分布等特征,提出了一种基于稀疏距离的故障检测方法(FD-SD).采用稀疏距离衡量测试样本周围训练样本的分布密度,统计测试样本近距离训练样本分布特征,应用变窗宽核密度估计方法估算样本距离的累计分布函数,根据阈值计算样本的稀疏距离.根据稀疏距离的累计分布函数设定检测控制限,建立基于稀疏距离的检测模型.该方法可以避免变量服从高斯、线性分布等假设问题,同时使故障检测的准确性与可靠性得到提高.通过在模拟实例和半导体蚀刻批次过程中的仿真应用,说明该方法可以处理过程具有非线性、多模态、多工序生产特征的故障检测问题.仿真实验验证了方法的有效性. Aiming at the features of multiple product processes, nonlinear and non-Gaussian, a fault detection method in batch process based on sparse distance (FD-SD) is proposed. Sparse distance is used to measure the density of training samples around a test sample and to analyze the training samples distribution feature near the test sample. Sparse distance is calculated by cumulative distribution function of sample distance through kernel density estimate function with changed window width. The control limit is calculated by cumulative distribution function of sparse distance, and then the detection model based on sparse distance is built. FD-SD does not needs the hypothesis of variables obeying Gauss and linear distribution and can improve the accuracy and reliability of the fault detection process. From Simulation results in artificial case and semicon- ductor etch batch process, it is shown that FD-SD can detect fault in nonlinear and muhi-mode processes. The validity of FD-SD is proved by the results.
出处 《信息与控制》 CSCD 北大核心 2014年第5期588-595,共8页 Information and Control
基金 国家自然科学基金资助项目(60774070 61174119) 国家自然科学基金重点课题资助项目(61034006)
关键词 稀疏距离 故障检测 主元分析 间歇过程 sparse distance fault detection principal component analy-sis batch process
  • 相关文献

参考文献22

  • 1Hung H, Wu P, Tu I, et al. On muhilinear principal component analysis of order-two tensors[ J]. Biometrika, 2012, 99 (3) : 569 -583.
  • 2周东华,李钢,李元.数据驱动的过程故障检测与诊断技术[M].北京:科学出版社,2011.
  • 3Wang J, He Q P, Qin S J, et al. Recursive least squares estimation for run-to-run control with metrology delay and its application to STI etch process [ J ]. IEEE Transactions on Semiconductor Manufacturing, 2005, 18 (2) : 309 - 319.
  • 4Yu J. Fault detection using principal components-based Gaussian mixture model for semiconductor manufacturing processes[ J]. IEEE Transac- tions on Semiconductor Manufacturing, 2011, 24 ( 3 ) : 432 - 444.
  • 5Wong J. Batch PLS analysis and FDC process control of within lot SiON gate oxide thickness variation in sub-nanometer range[ C ]//Proceed- ings of AEC/APC Symposium XVIII. 2006.
  • 6Tracy N, Young J, Mason R. Multivariate control charts for individual observations [ J ]. Journal of Quality Technology, 1992, 24 (2) : 88 - 95.
  • 7Jackson J E, Mudholkar G S. Control procedures for residuals associated with principal component analysis [ J]. Technometrics, 1979, 21 (3) : 341 -349.
  • 8Gunther J C, Conner J S, Seborg D E. Process monitoring and quality variable prediction utilizing PLS in industrial fed-batch cell culture [ J ]. Journal of Process Control, 2009, 19 (5) : 914 - 921.
  • 9Zhao S J, Zhang J, Xu Y M. Monitoring of processes with multiple operating modes through multiple principle component analysis models [ J ]. Industrial & Engineering Chemistry Research, 2004, 43 ( 22 ) : 7025 - 7035.
  • 10Choi S W, Martin E B, Morris A J. Adaptive multivariate statistical process control for monitoring time-varying processes[J]. Industrial & En- gineering Chemistry Research, 2006, 45 (9) : 3108 - 3118.

二级参考文献4

共引文献44

同被引文献47

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部