期刊文献+

基于阴影图像本征值的室外目标跟踪 被引量:2

Outdoor Target Tracking Based on Intrinsic Values of Shadow Images
原文传递
导出
摘要 针对阴影导致目标跟踪中的目标丢失问题,提出了一种基于图像本征值的室外目标跟踪方法.首先,根据相机成像时阴影内外像素值的线性关系,推导出一种新的阴影图像本征值计算方法;然后,将经过阴影的目标所在区域变换到本征值生成的本征图像中;最后,利用MS(mean shift)跟踪算法在本征图像中进行目标精确定位.此方法不需要任何相机的相关参数信息,计算速度快.本文对多组含有阴影的序列中的目标进行了对比跟踪实验.与其它跟踪方法相比,本文的方法具有更高的跟踪精度,计算速度也可以达到实时的要求.实验结果说明本文方法对室外复杂光照条件下的跟踪具有更好的适用性和跟踪精度. For the target losing problem caused by shadows during target tracking, an outdoor target tracking method is proposed based on the intrinsic value of a shadow image. A new method is proposed to calculate the intrinsic value of a shadow image based on the derivation of a linear relationship between the pixel values inside and outside the shadow areas. The sequence images are transformed into intrinsic images, which are insensitive to shadows, and then a mean shift tracker is employed to locate the object in the image. Our method doesn't need any of the camera's parameters, and has a high calculation rate. Object-tracking experiments have been done on sequence images with shadows, Compared with other tracking methods, our method has a higher tracking accuracy, and the calculation speed can achieve real-time requirements. The experimental results validate the performance of our method.
出处 《信息与控制》 CSCD 北大核心 2014年第5期604-611,共8页 Information and Control
基金 国家自然科学基金青年基金资助项目(61102116 61105013) 博士后科学基金面上资助项目(2011M500584)
关键词 阴影 目标跟踪 本征值 线性关系 shadow object tracking intrinsic value linear relationship
  • 相关文献

参考文献2

二级参考文献11

  • 1谭荣伟,雷蕴奇,陈柏生.夜间运动车辆检测[J].计算机工程与应用,2005,41(13):227-228. 被引量:13
  • 2王艳春,李建军,何鹏,尹明.公路交通管理中行驶车辆自动识别技术研究[J].微计算机信息,2006(01Z):193-195. 被引量:13
  • 3王晓东,丁冬花.实时车辆检测和跟踪系统设计[J].微计算机信息,2006(11Z):237-239. 被引量:2
  • 4Cheng H Y, Yu C C, Tseng C C, et al. Environment classification and hierarchical lane detection for structured and unstructured roads[J]. IET Computer Vision, 2010,4(1) :37 - 49.
  • 5Kim Z W. Robust lane detection and tracking in challenging scenarios [J]. IEEE Trans on Intelligent Transportation Systems, 2008,9 ( 1 ) : 16 - 26.
  • 6Li Qing, Zheng Nanning, Cheng Hong. Spingrobot:a prototype autonomous vehicle and its algorithms for lane detection[J]. IEEE Trans on Intelligent Transportation Systems, 2004,5(4) :300 - 308.
  • 7McCall J C, Trivedi M M. Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation[J]. IEEE Trans on Intelligent Transportation Systems, 2006,7(1) :20 - 37.
  • 8Levine M D, Bhanttacharyya J. Removing shadows[J]. Pattern Recognition Letters, 2005,26 (3) : 251 - 265.
  • 9Salvador E, Cavallaro A, Ebrahimi T. Cast shadow segmentation using invariant color features [ J ]. Computer Vision and Image Understanding, 2004, 95(2):238 - 259.
  • 10Pinlayson G D, Drew M S, Lu C. Entropy minimization for shadow removal [J ]. International Journal of Computer Vision, 2009,85 ( 1 ): 35 - 57.

共引文献7

同被引文献15

  • 1Gonzalez R, et al. Digital image processing[M]. 3rd ed. US: Prentice Hall, 2008.
  • 2Li N, et al. Saliency detection on light field[C]//Proceedings of IEEE conference on computer vision and pattern recognition. Columbus OH: IEEE Computer Soeiety, 2014: 2806-2813.
  • 3Recht B, et al. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J]. Proceedings of SIAM Rev, 2010, 52(3): 471-501.
  • 4Candes E, et al. Exact matrix completion via convex optimiza- tion[J]. Foundations of Computational Math, 2009, 9 (6): 717-772.
  • 5Candes E,et al. The power of convex relaxation: near-optimal matrix completion[J]. IEEE Transaction on Information Theo- ry, 2010, 56(5): 2053-2080.
  • 6Harel J,et al. Graph-based visual saliency[C]//Proceedings of the 21st annual conference on neural information processing sys- tems. Vancouver BC, 2007: 545-552.
  • 7Mizushima A, et al. An image segmentation method for apple sorting and grading using support vector machine and Otsu ' smethod[J]. Computers and Electronics in Agriculture, 2013, 94(6) :29-37.
  • 8Brese C L,et al. Affine invariant matching based on orientation estimation[C]// Proceedings of the 7th international confer- ence on signal processing and communication systems. Carrara VIC IEEE Communications Society, 2013: 1-6.
  • 9Yu G S, et al. ASIFT: an algorithm for fully affine invariant comparison[J]. Image Processing on Line Journal, 2011, (1).
  • 10仝卫国,苑津莎,李宝树.图像处理技术在直升机巡检输电线路中的应用综述[J].电网技术,2010,34(12):204-208. 被引量:78

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部