期刊文献+

基于绿灯时间等饱和度的TD学习配时优化模型

The Optimization Model of TD Learning Timing Based on the Green Time Equi-saturation
下载PDF
导出
摘要 首先对传统的绿灯时间等饱和度概念进行了扩展,提出了分级绿灯时间等饱和度.在此基础上,针对分级绿灯时间等饱和度目标,构造了奖赏函数,采用了模糊方法解决流量状态空间维数爆炸问题,建立了定周期和变周期两种模式下的四种离线TD学习配时优化模型.通过Matlab编程,开发了这四种模型的计算程序,相对于在线TD学习模型,离线TD学习模型更适合交叉口信号配时优化.以一个两相位控制的单交叉口配时优化作为算例,对比分析了四种模型的性能.总体上变周期模式的离线TD学习模型可以获得解的结构、最优解的分布,这是传统配时理论不具备的.定周期条件下,奖赏分级的效果不明显;变周期条件下,奖赏分级效果明显,交通性能更优. We propose the multi-level green time saturation.On this basis,for the classification of green time saturation target,the study constructs a reward function,uses the fuzzy method to solve the traffic state space dimension explosion problem,and establishes four optimization models of offline TD learning under fixed period and variable cycle two modes.Using a two-phase control of a single intersection as an example,the study comparatively analyzes the performance of four models.Generally speaking,offline TD learning model of variable cycle mode can obtain the structure of solutions and the optimal solutions distribution,which does not belong to the traditional timing theory.Under the fixed period condition,reward grading effect is not obvious,while under the variable cycle condi-tion,reward grading effect is obvious and the traffic has better performance.
出处 《长沙大学学报》 2014年第5期70-74,共5页 Journal of Changsha University
关键词 配时优化 绿灯时间等饱和度 TD方法 状态模糊 变周期 timing optimization green time equi-saturation TD control state fuzzy variable cycle
  • 相关文献

参考文献7

二级参考文献26

  • 1杨晓光,庄斌,李克平.信号交叉口饱和流率和启动延误的影响分析[J].同济大学学报(自然科学版),2006,34(6):738-743. 被引量:22
  • 2承向军,常歆识,杨肇夏.基于Q-学习的交通信号控制方法[J].系统工程理论与实践,2006,26(8):136-140. 被引量:14
  • 3赵晓华,李振龙,陈阳舟,李云驰.基于混杂系统Q学习最优控制的信号灯控制方法[J].高技术通讯,2007,17(5):498-502. 被引量:5
  • 4全永椠.城市交通控制[M].北京:人民交通出版社,1989.
  • 5马凤伟,刘智勇.城市交通干线的Q-学习控制算法[J].五邑大学学报(自然科学版),2007,21(3):16-22. 被引量:3
  • 6Sutton R S. Introduction: The challenge of reinforcement learning[J]. Machine Learning, 1992, 8: 225-227
  • 7LIN Long_Ji. Self_improving reactive agents based on reinforcement learning, planning and teaching[J]. Machine Learning, 1992, 8: 69-97
  • 8Watkins C J C H. Technical notes:Q_learning[J]. Machine Learning, 1992, 8: 55-68
  • 9He Guoguang,Noeth G. Urban traffic control system-A general analysis from the point of view of control theory[A]. Transportation Systems: Theory and Application of Advanced Technology[C]. Oxford:PERGAMON Press,1997. 518-521
  • 10Oliveira, et al. Reinforcement learning based control of traffic lights in non-stationary environments: A case study in a microscopic simulator [C] // Proceedings of the 4th European Workshop on Multi- Agent Systems (EUMAS06). Lisbon, Portugal, December 2006 :31-42.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部