期刊文献+

基于内容的图像检索-感兴趣区域的提取 被引量:3

Content-based Image Retrieval—Extracting Region of Interest
下载PDF
导出
摘要 基于内容的图像检索是当前研究的热点和难点,提取图像的感兴趣区域,能够提高检索的准确性.该文提出了一种基于特征点的感兴趣区域提取方法,首先基于多曲率多项式提取图像的特征点,然后根据一定的规则提取感兴趣区域,实验证明,使用这种感兴趣区域提取方法,能较大地提高检索的查准率. Content-based image retrieval is the hotspot and aporia of current research,extracting the region of interest can achieve good performance. A novel method of extracting the region of interest is presented based on salient points. The salient points are firstly detected by multi-scale curvature polynomial,then extracts the region of interest according to some rules. Experimental results show that the method can effectively describe the region of interest and achieve good performance.
作者 陈瑞文
出处 《通化师范学院学报》 2014年第10期53-55,共3页 Journal of Tonghua Normal University
基金 福建省教育厅2012年度B类课题 "关于高等职业院校计算机图形图像教学的研究与探讨"(JB12495S)
关键词 特征点 感兴趣区域 图像检索 多曲率多项式 salient point region of interest image retrieval multi-scale curvature polynomial
  • 相关文献

参考文献6

二级参考文献41

共引文献51

同被引文献22

  • 1C. C. Yang. Content-Based Image Retrieval. a Comparison between query by example and image browsing map approaches[J]. Jour- nal of Information Science, 2004(2) :254-267.
  • 2C. Beecks, M. S. Uyasal,and T. Seidl. A Comparative Study of Similarity Measures for Content-Based Multimedia Retrieval[C]. IEEE, 2010.
  • 3Y. Xiaohong,X. Jinhua. The Related Techniques of Content-Based Image Retrieval[J]. IEEE Computer Society, 2008 (1) : 82-89.
  • 4B. Thomee,M. S. Lew. Relevance Feedabck in Content-Based Image Retrieval. Promising Direction [J]. Proc. 3th annual confer- ence of the Advanced School for Computing and Imaging, Heijen, Netherlands, 2007(2) : 450-456.
  • 5R. Ding, X. Ji, L. Zhu. Research on the Relevance Feedbackbased Image Retrieval in Digital Library[J]. V. Word Academy of Sci ence, Engineering and Technology, 2007(11): 31-37.
  • 6B. I.i,S. Yuan. A Novel Relevance Feedback Method in Content-Based Image Retrieval[J]. Proc. International Conference on infor- mation Technology: Coding and Computing(ITCC'04), IEEE Computer Society, 2004.
  • 7H. Zhang, Z. Chen, W. Liu, M. Li. Invited Relevance Feedback in Content-Based Image Search[C]. presented at Keynote, 12th Int. Conf. on New Information Technology (NIT), Beijing,May.
  • 8A. Selmat ,M. Ismail. Effectiveness of Relevance Feedback for Content Based Image Retrieval using Gustafson-Kessel Algorithm [C]. Proc. International Conference on Computer and Communication Engineering, IEEE,Malaysia, 2008(5).
  • 9N. B. Zainuddin. Image Information Retrieval using Oustafson-Kessel Relevance Feedback[J]. Universiti Teknologi Malaysia, 2006 (6).
  • 10T. Chiang, T. Tsai, M. Hsiao. A Hierarchical Grid-Based Indexing Method for Content-Based Image Retrieval[J]. Intelligent In- formation Hiding and Multimedia Signal Processing, IIHMSP, 2007(11): 206-209.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部