期刊文献+

均值漂移优化的粒子滤波目标跟踪方法

Particle filter target tracking method optimized by mean shift
下载PDF
导出
摘要 为了实现粒子集的有效传播,克服粒子滤波跟踪时的退化问题,提出尺度和方向自适应的均值移动优化粒子滤波目标跟踪算法。用改进的均值移动作为一种优化机制对粒子进行传播,使粒子能够有效分散和聚类,有效解决退化问题。最后将该方法应用到真实图像序列中,实验表明算法在性能和效率上有明显提高。 In order to achieve the effective dissemination of the particle set and overcome the degradation of particle filter tracking, a particle filter target tracking algorithm optimalized by Scale and Orientation Adaptive Mean Shift is proposed. Considering improved mean shift as an optimization mechanism of particle propagation, the particles can be effectively dispersed and clustering, so the degradation problems can be effectively solved. Finally, this method is applied to the real image sequences. Experiments show that the performance and efficiency of the algorithm are significantly better.
出处 《黑龙江工程学院学报》 CAS 2014年第5期35-38,共4页 Journal of Heilongjiang Institute of Technology
基金 哈尔滨市科技局科技创新人才研究专项资金项目(RC2014QN009012) 黑龙江省教育厅科学技术研究项目(12531528) 黑龙江工程学院大学生创新训练项目(201311802100) 黑龙江工程学院博士科学研究基金资助项目(2012BJ20)
关键词 均值移动 粒子滤波 自适应 跟踪 mean shift partilce filter adaptive tracking
  • 相关文献

参考文献8

  • 1E.Maggio,A.Cavallaro,Hybrid particle filter and Mean Shift tracker with adaptive transition model[J].Proc.Int.Conf.Acoustics,Speech,and Signal Processing,2005.
  • 2朱明清,王智灵,陈宗海.基于灰色预测模型和粒子滤波的视觉目标跟踪算法[J].控制与决策,2012,27(1):53-57. 被引量:13
  • 3BLACKE DEUTSCHER,REID I.Articulated body motion capture by annealed particle filtering[J].Proc.IEEE Conf.Computer Vision Pattern Recognition,2000.
  • 4KHAN Z H,GU I Y.Robust visual object tracking using multi-mode anisotropic mean shift and particle filters[J].IEEE Transactions on Circuits and Systems for Video Technology.2011,(21) 1,74-87.
  • 5KOICHIRO D,OKI K,TAKAYUKI O.Object tracking by the mean-shift of regional color distribution combined with the particle-filter algorithm[J].In:Proc 17th Internat.Conf.on Pattern Recognition,2004,vol.3,506-509P.
  • 6NING J,ZHANG L,ZHANG D,et al.Scale and Orientation Adaptive Mean Shift Tracking[M].in IET Computer Vision.2010,1-23P.
  • 7BIRCHFIELD S T,RANGARAJAN S.Spatiograms Versus Histograms for Region-Based Tracking[J].Proc.CVPR,June 2005,1158-1163P.
  • 8王亚东,雷国华,安波,于燕飞,许宪东.一种仿人足球机器人视觉系统环境特征获取与识别方法[J].黑龙江工程学院学报,2013,27(2):68-71. 被引量:7

二级参考文献30

  • 1陈凤东,洪炳镕,朱莹.基于HSI颜色空间的多机器人识别研究[J].哈尔滨工业大学学报,2004,36(7):928-930. 被引量:33
  • 2王植,贺赛先.一种基于Canny理论的自适应边缘检测方法[J].中国图象图形学报(A辑),2004,9(8):957-962. 被引量:214
  • 3Zhang C C, Chen X, Zhou L P, et al. Semantic retrieval of events from indoor surveillance video databases[J]. Pattern Recognition Letters, 2009, 30(12): 1067-1076.
  • 4Eom K Y, Ahn T K, Kim G J, et al. Fast object tracking in intelligent surveillance system[C]. Int Conf on Computational Science and Its Applications. France, 2009: 749-763.
  • 5Shan C F, Tan T N, Wei Y C. Real-time hand tracking using a mean shift embedded particle filter[J]. Pattern Recognition, 2007, 40(7): 1958-1970.
  • 6Matthews I, Cootes T F, Bangham J A, et al. Extraction of visual features for lipreading[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(2): 198-213.
  • 7Siagian C, Itti L. Biologically inspired mobile robot vision localization[J]. IEEE Trans on Robotics, 2009, 25(4): 861- 873.
  • 8Fontanelli D, Salads P, Belo F A W, et al. Visual appearance mapping for optimal vision based servoing[C]. The 11th Int Symposium on Experimental Robotics. Athens, 2008: 353-362.
  • 9Kim J, Kweon I S. Vision-based autonomous navigation based on motion estimation[C]. Int Conf on Control, Automation and Systems. Seoul, 2008: 1738-1743.
  • 10Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Trans on Signal Processing, 2002, 50(2): 174-188.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部