期刊文献+

锂离子电池富锂锰基正极材料的研究进展 被引量:4

Research states of lithium-rich manganese-based cathode material for Li-ion batteries
下载PDF
导出
摘要 富锂锰基正极材料Li2MnO3·LiMO2具有高达300mAh/g的理论容量,并且电压能够达到4.5V,从而具有最高的能量密度,被广泛认为是具有潜力的下一代锂离子正极材料,但是该材料的循环性能以及倍率性能尚不能达到应用要求。本文从机理、合成方法以及材料改性方面综述了富锂锰基正极材料的现状,并且提出了下一步的研究方向。 Lithium-rich layered cathode material Li2MnO3·LiMO2has a high theoretical capacity about 300mAh/g,and the voltage about 4.5V.It is widely considered to be the next-generation lithium ion potential of the positive electrode material with the highest energy density,but the rate performance and cycle performance of this material can't meet the applications demands.The status of the lithium-rich layered cathode material is reviewed from the mechanism of the synthesis methods and material modification terms,and the future research directions are proposed.
出处 《电池工业》 CAS 2014年第3期157-162,共6页 Chinese Battery Industry
基金 国家863计划项目(No.2009AA11A113) 国家火炬计划项目(No.2008GH051107)
关键词 锂离子电池 富锂锰基正极材料 能量密度 研究进展 Li-ion battery lithium-rich manganese-based cathode material energy density
  • 相关文献

参考文献36

  • 1Kannan A M,Rabenberg L, Manthiram A. High capac- ity surface-modified LiCoOz cathodes for lithium-ion batteries [J]. Electrochem Solid-State Lett, 2003, 6: A16--A18.
  • 2Young Ho Rho, Kiyoshi Kanamura, Takao Umegaki. LiCoO2 and LiMnz O9 thin-film electrodes for recharge- able lithium batteries preparation using PVP sol-gel to produce excellent electrochemical properties[J]. J Elec- trochem Soc, 2003,150 .. A107 -- A111.
  • 3Yuanxiang Gu, Dairong Chen, Xiuling Jiao, Synthesis and electrochemical properties of nanostructured Li- CoO2 fibers as cathode materials {or lithium-ion batter- ies[J]. J Phys Chem B, 2005,109:17901--17906.
  • 4Suhramanian V, Chen C L, Chou H S, et al. Micro- wave-assisted solid-state synthesis of LiCoO2 and its electrochemical properties as a cathode material for lithi- um batteries[J] J Mater Chem, 2001,11:3348--3353.
  • 5Tsutomu Ohzuku, Yoshinari Makimura. Layered lithi- um insertion material of LiNi/z Mn/z Oz : a possible al- ternative to LiCoOz for advanced lithium-ion batteries [J]. Chemistry Letters, 2001,30 : 744-- 745.
  • 6Nohma T,Kurokawa H,Uehara M, et al. Electrochemi- cal characteristics of LiNiOz and LiCoOz as a positive material for lithium secondary batteries[J]. Journal of Power Sources, 1995,54 : 522-- 524.
  • 7Do Kyung Kim, Muralidharan P, Hyun-Wook Lee,et al. Spinel LiMnz04 nanorods as lithium ion battery cath- odes[J]. Nano Lett, 2008,8.. 3948--3952.
  • 8Eiji Hosono, Tetsuichi Kudo, Itaru Honma, et al. Syn- thesis of single crystalline spinel LiMnz 04 nanowires for a lithium ion battery with high power density[J]. Nano Lett, 2009(9) :1045--1051.
  • 9Jia-yan Luo, Yong-gang Wang, Huan-ming Xiong, et al. Ordered mesoporous spinel LiMnz 04 by a soft-chemical process as a cathode material for lithium-ion batteries [J]. Chem Mater, 2007,19 : 4791-- 4795.
  • 10Park CW, Kim S H, Ruth Mangani I, et al. Synthesis and materials characterization of Liz MnO-LiCrOz sys- tem nanocomposi, te electrode materials[J]. Materials Research Bulletin, Z007,42 .. 1374-- 1383.

二级参考文献26

  • 1Xia Y Y,Zhou Y H, Yoshio M. Capacity fading on cycling of 4 V Li/LiMn2Oa cells[J] .J Electrochem Soc, 1997,144(8) : 2 593 - 2 600.
  • 2Kim J H, Yooh C S, Myung S T.Phase transitions in Lil-aNio.5 M nl.304 during cycling at 5 V [ J ]. Electrochem Solid-State Lett, 2004,7(7) : A216 - A220.
  • 3Sun Y Y, Yang Y F, Zhan H, et al.Synthesis of high power type LiMnl.sNio.5 04 by optimizing its preparation conditions [J]. J Power Sources,2010,195(13) :4 322 - 4 326.
  • 4Kim J H, Myurtg S T, Sun Y K. Molten salt synthesis of LiNio s Mn2.504 spinel for 5 V class cathode material of Li-ion secondary battery[J]. Electroehim Acta,2004,49(2) :219 - 227.
  • 5Sun Q, Li X H, Wang Z X, et al . Synthesis and electrochemical performance of spinel LiNio.5 M nt.5 04 prepared by solid-state reaction [ J] .Transactions of Nonferrous Metals Society of China, 2009,19(1):176- 181.
  • 6Fang H S, Wang Z X, Li X H, et al. Exploration of high capacity LiNio.sMnl.5 04 synthesized by solid-state reaction [J] .J Power Sources, 2006,153 ( 1 ) : 174 - 176.
  • 7Lafont U, Locati C, Borghols W J H, et al. Nanosized high voltage cathode material LiM go.05 Nio.45 Mn1.5 04 : structural, electrochemical and in situ investigation [ J]. J Power Sources, 2009, 189 ( 1 ) : 179- 184.
  • 8Chert Z Y, Zhu H L, Ji S, et al. Performance of LiNio.s M n1s O4 prepared by solid-state reaction [ J] .J Power Sources, 2009, 189 (1):507-510.
  • 9Fang X,Ding N,Feng X Y, et al .Study of LiNio.sMnl.504 synthesized via a chloride-ammonia co-precipitation method: electrochemical performance, diffusion coefficient and capacity loss mechanism[ J]. Electrochim Acta.2009.54(28) :7 471 - 7 475.
  • 10Liu D Q, Han J T, Goodenough J B.Structure, morphology, and cathode performance of Li1-x[ Nio.5 Mnl.5] 04 prepared by coprecipitation with oxalic acid [ J ] . J Power Sources, 2010, 195 ( 9 ) : 2 918-2 923.

共引文献9

同被引文献39

  • 1刘欣艳,赵煜娟,李燕,夏定国,储旺盛,李树军,吴自玉.Al、Co和Mn掺杂对LiNiO_2结构的影响[J].无机化学学报,2006,22(6):1007-1012. 被引量:8
  • 2KIM J H, PARK, C W, SUN Y K. Synthesis and electrochemical behavior of Li[Li0.1Ni0.35-x/2CoxMn0.55-x/2]O2 cathode materials[J]. Solid State Ionics, 2003, 164(1): 43-49.
  • 3TANG A, HUANG K. Structure and electrochemical properties of Li1+yNi0.5AlxMno.5-xO2 synthesized by a new sol-gel method[J]. Materials Chemistry and Physics, 2005, 93(1): 6-9.
  • 4LEE S H, KOO B K, IrdM J C, KIM K M. Effect of Co3(PO4)2 coating on Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for lithium rechargeable batteries[J]. Journal of Power Sources, 2008, 184: 276-283.
  • 5KANG S H, KEMPGENS P, GREENBAUM S, KROPF A J, AMINE K, THACKERAY M M. Interpreting the structural and electrochemical complexity of 0.5Li2MnO3.0.5LiMO2 electrodes for lithium batteries (M=Mn0.52-xNi0.52-xCO2x, 0 ≤ x ≤ 0.5)[J]. Journal of Materials Chemistry, 2007, 2071: 2069-2077.
  • 6JOHNSON C S, KIM J S, LEFIER C, LI N, VAUGHEY J T, THACKERAY M M. The significance of the Li2MnO3 component in composite xLi2MnO3-( 1 -x)LiMn0.5Ni0.5O2 electrodes[J]. Electrochemistry Communications, 2004, 87(6): 1085-1091.
  • 7ARMSTRONG A R, HOLZAPFEL M, NOVAK P, JOHNSHON C S, KANG S H, THACKERAY M M, BRUCE P G. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.06]O2[J]. Journal of the American Chemical Society, 2006, 128(6): 8694-8698.
  • 8THACKERAY M M, KANG S H, JOHNSHON C S, VAUGHE J T, BENEDEK R, HACKNEY S A. Li2MnO3-stabilized LiMO2 (M=Mn. Ni. Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(5): 3112-3125.
  • 9REN Ha-bo, HUANG Yang-hui, WANG Yun-hong, LI Zhong-jing, CAI Ping, PENG Zheng-he, ZHOU Yun-hong. Effects of different carbonate precipitators on LiNi1/3CO1/aMn1/3O2 morphology and electrochemical performance[J]. Material Chemistry Physical, 2009, 117(1): 41-45.
  • 10PARK S H, SUN Y K. Synthesis and electrochemical properties of layered Li[Li0.15Ni(0.275-x/2)AlxMn(0.575-x/2)]O2materialsprepared by sol-gel method[J]. Journal of Power Sources, 2003, 119/121: 161-165.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部