摘要
考虑了如下一类四阶P-Laplacian中立型泛函微分方程n n[″φp((μ(t)-μ(t-rj)j∑cj=1))]″=f(μ(t))μ′(t)+α(t)g(μ(t))+))+p(t)j∑βj(t)g(μ(t-γj(t)=1周期解的存在性.通过使用Mawhin重合度理论,得到了其周期解存在的充分性条件的新结果,改进和推广了已有结果.
The existence of solutions for a kind of four-order p-Laplacian neutral functional differential equation as follows[(υ)p((μ(t)-n ∑ j=1 cjμ(t-rj))")]"=f(μ(t))μ'(t)+α(t)g(μ(t))+n ∑ j=1βj(t)g(μ(t-tj(t)))+p(t)is considered. By using continuation theorem of coincidence degree theory developed by Mawhin, some new results on the sufficient condition for the existence of periodic solutions are obtained . This result improve and generalize some known result.
出处
《大学数学》
2014年第5期8-16,共9页
College Mathematics
基金
Research Foundation for Doctor Station of Ministry of Education of China(20113401110001)
Nature Science Foundation of Anhui Province(1308085MA01)
Excellent Young Talents Foundation of Anhui Province(2013SQRL080ZD)
Graduate Academic Innovation Research Project of Anhui University(10117700020)
关键词
周期解
Mawhin重合度定理
中立型泛函微分方程
四阶
periodic solutions
Mawhin coincidence degree theorem
neutral functional differentialequation
four-order