期刊文献+

四阶P-Laplacian中立型泛函微分方程周期解的存在性(英文)

Existence of Periodic Solutions for Four-order P-Laplacian Neutral Functional Differential Equation
下载PDF
导出
摘要 考虑了如下一类四阶P-Laplacian中立型泛函微分方程n n[″φp((μ(t)-μ(t-rj)j∑cj=1))]″=f(μ(t))μ′(t)+α(t)g(μ(t))+))+p(t)j∑βj(t)g(μ(t-γj(t)=1周期解的存在性.通过使用Mawhin重合度理论,得到了其周期解存在的充分性条件的新结果,改进和推广了已有结果. The existence of solutions for a kind of four-order p-Laplacian neutral functional differential equation as follows[(υ)p((μ(t)-n ∑ j=1 cjμ(t-rj))")]"=f(μ(t))μ'(t)+α(t)g(μ(t))+n ∑ j=1βj(t)g(μ(t-tj(t)))+p(t)is considered. By using continuation theorem of coincidence degree theory developed by Mawhin, some new results on the sufficient condition for the existence of periodic solutions are obtained . This result improve and generalize some known result.
出处 《大学数学》 2014年第5期8-16,共9页 College Mathematics
基金 Research Foundation for Doctor Station of Ministry of Education of China(20113401110001) Nature Science Foundation of Anhui Province(1308085MA01) Excellent Young Talents Foundation of Anhui Province(2013SQRL080ZD) Graduate Academic Innovation Research Project of Anhui University(10117700020)
关键词 周期解 Mawhin重合度定理 中立型泛函微分方程 四阶 periodic solutions Mawhin coincidence degree theorem neutral functional differentialequation four-order
  • 相关文献

参考文献9

  • 1Jin Shan,Lu Shiping.Periodic solutions for a fourth-order p-Lapacian Differential Equations with a deviating argument.[J].Nonlinear Analysis,2008,69:1710-1718.
  • 2Lu Shiping.Existence of periodic solutions for a P-Laplacian neutral function Functional Differential Equations[J].Nonlinear Analysis,2009,70:231-243.
  • 3Lu Shiping.Periodic solutions to a second order p-Lapacian neutral functional differential system[J].Nonlinear Analysis,2008,69:4215-4229.
  • 4Wang Lianglong,Wang Zhicheng.Controllability of abstract neutral functional differential systems with infinite delay[J].Dynamics of Continuous,Discrete and Impulsive Systems,Series B:Applications&Algorithms,2002,9(2):59-70.
  • 5Lu Shiping,Gui Zhanji,Ge Weigao.Periodic solutions to a second order nonlinear neutral functional differential equation in the critical case[J].Nonlinear Analysis,2006,64:1587-1607.
  • 6Lu Shiping,Gui Zhanji,On the existence of periodic solutions to p-Lapacian Rayleigh differential equations with a delay[J] ,J.Math.Anal.Appl.,2007,325:685-702.
  • 7Lu Shiping,Ge Weigao.Periodic solutions of neutral differential equation with multiple deviating arguments[J].Applied Mathematics and Computation,2004,156:705-717.
  • 8Liu bingshu,Liu wenbing.Existence of Periodic Solutions for Four-order P-Laplacian Neutral Functional Differential Equation[J].Journal of Jilin University(Science Edition),2011,49(3):430-436.
  • 9Gines R E,Mawhin J L.Coincidence degree and nonlinear differential equations[M] Heidelberg:Springer–Verlag Berlin,1977.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部